[1] Zheng H, Han M, Zheng P, Zheng L, Qin H, Deng L. Porous silicon templates prepared by Cu-assisted chemical etching. Materials Letters. 2014; 118: 146-149.
[2] Zheng H, Zhou JJ, Deng JX, et al. Preparation of two-dimensional yttrium iron garnet magnonic crystal on porous silicon substrate. Materials Letters. 2014; 123: 181-183.
[3] Zheng H, Qin HB, Zheng P, Deng JX, Zheng L, Han MG. Preparation of low ferromagnetic resonance linewidth yttrium iron garnet films on silicon substrate. Applied Surface Science. 2014; 307: 661-664.
[4] Zheng H, Han M, Deng J, et al. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template. Applied Surface Science. 2014; 311: 672-675.
[5] Qian YW, Deng JX, Zheng H, Zheng P, Zheng L, Qin HB. Influence of Oxygen Pressure on the Properties of Ni-Mn-Zn Ferrite Films on Silicon Substrate. Journal of Elec Materi. 2014; 43(11): 4289-4293.
[6] Zheng H, Han M, Zheng L, et al. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate. Applied Physics Letters. 2015; 107(6): 062401.
[7] Zheng H, Han M, Wu Y, Zhao W, Deng L. Magnetic properties of hexagonal barium ferrite films on Pt(111)/Al2O3(0001) substrate based on optimized thickness of Pt. In: 2016 IEEE International Nanoelectronics Conference (INEC). IEEE; 2016: 1-2.
[8] Zheng H, Han MG, Deng LJ. Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties. Chinese Phys B. 2016; 25(2): 026201.
[9] Li XX, Zhou JJ, Deng JX, Zheng H, Zheng L, Zheng P, Qin HB. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering. Journal of Elec Materi. 2016; 45(10): 4973-4978.
[10] Zheng H, Zheng L, Zheng P, Deng JX, Ying ZH, Qin HB. Effect of Pt buffer layer on crystal structure and magnetic properties of hexagonal barium ferrite films. Materials Letters. 2017; 190: 263-265.
[11] Xu Z, Zheng H, Han MG. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd 3 Ga 5 O 12 substrate. Chemical Physics Letters. 2017; 680: 90-93.
[12] Chen RY, Zhou JJ, Zheng L, Zheng H, Zheng P, Ying ZH, Deng JX. Two-Step Sintering Behavior of Sol–Gel Derived Dense and Submicron-Grained YIG Ceramics. Journal of Elec Materi. 2018; 47(4): 2411-2416.
[13] Shen SY, Zheng H, Zheng P, et al. Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met. 2018; 40(4): 981-986.
[14] Zheng H, Zheng P, Feng Q, Deng J, Ying Z, Zheng L. Oriented of micron-thick Y3Fe5O12 film on Gd3Ga5O12 substrate based on layer by layer growth method. Materials Letters. 2018; 218: 241-244.
[15] Shao LH, Shen SY, Zheng H, Zheng P, Wu Q, Zheng L. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic. Journal of Elec Materi. 2018; 47(7): 4085-4089.
[16] Zhou E, Zheng H, Zheng L, et al. Synthesis of dense, fine‐grained hexagonal barium ferrite ceramics by two‐step sintering process. Int J Applied Ceramic Tech. 2018; 15(4): 1023-1029.
[17] Zheng H, Zheng P, Wu Q, et al. Tens of micron-thick, crack-free yttrium iron garnet films on a Gd3Ga5O12 substrate based on the layer by layer growth method. J Mater Sci: Mater Electron. 2018; 29(14): 11790-11794.
[18] Li K, Zheng H, Zheng P, et al. Crack-free Y3Fe5O12 films deposited on Si substrate obtained by two-step annealing process. Materials Letters. 2018; 228: 21-24.
[19] Guo Q, Zheng H, Zheng L, Zheng P, Wu Q. Target grain size dependence of the morphology, crystallinity and magnetic properties of yttrium iron garnet films. Ceramics International. 2019; 45(3): 3414-3418.
[20] Zheng H, Han Mangui, Deng L, et al. Erratum to “Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures”[J. Magn. Magn. Mater. 413(2016) 25–29]. Journal of Magnetism and Magnetic Materials. 2019; 476: 632.
[21] Zheng H, Luo J, Wu Q, et al. Hexagonal barium ferrite films on a Pt(1 1 1)/Si(0 0 1) substrate and their local magnetic properties. Journal of Magnetism and Magnetic Materials. 2019; 479: 99-104.
[22] Luo J, Zheng H, Deng J, et al. Micromagnetic simulation of dynamic magnetic susceptibility and magnetostatic interaction fields of conical-shaped barium ferrite nanodot arrays. J Phys D: Appl Phys. 2019; 52(40): 405001.
[23] Guo QW, Zheng H, Zheng L, Deng JX, Zheng P, Wu Q. Morphology, Crystal Structure and Ferromagnetic Resonance Properties of Submicron-Thick Yttrium Iron Garnet Films Prepared by Pulsed Laser Deposition. Journal of Elec Materi. 2019; 48(8): 4850-4855.
[24] Fan LN, Zheng H, Shen SY, et al. Film-Thickness Dependence of the Morphology, Crystal Structure and Magnetic Properties of BaFe12O19 Films Prepared by Pulsed Laser Deposition. Journal of Elec Materi. 2019; 48(9): 5717-5722.
[25] Luo J, Zheng H, Chen W, et al. Conical-shaped hexagonal barium ferrite nanodot arrays on an alumina substrate based on an ultrathin alumina mask method. Journal of Magnetism and Magnetic Materials. 2019; 489: 165449.
[26] Cao H, Zheng H, Fan L, et al. Structural, morphological, dielectric and magnetic properties of Zn‐Zr co‐doping yttrium iron garnet. Int J Applied Ceramic Tech. 2020; 17(2): 813-822.
[27] Chen W, Zheng H, Hu D, et al. Fabrication of CoFe2O4 Nanowire Using a Double-Pass Porous Alumina Template with a Large Range of Pore Diameters. Crystals. 2020; 10(4): 331.
[28] Wei X, Zheng H, Chen W, et al. Crystal structure, morphology and magnetic properties of hexagonal M-type barium ferrite film based on the substrate temperature. Chemical Physics Letters. 2020; 752: 137541.
[29] Zheng H, Chu Q, Zheng P, et al. Nitrogen-Doped Few-Layer Graphene Grown Vertically on a Cu Substrate via C 60 /Nitrogen Microwave Plasma and Its Field Emission Properties. J Phys Chem C. 2020; 124(39): 21684-21691.
[30] Fan L, Zheng H, Zhou X, et al. A comparative study of microstructure, magnetic, and electromagnetic properties of Zn2W hexaferrite prepared by sol–gel and solid-state reaction methods. J Sol-Gel Sci Technol. 2020; 96(3): 604-613.
[31] Zhang H, Fan L, Cao H, Yu Y, Zhang T, Feng Q, Zheng H, Wu Q, Zhang Y. Microstructure, magnetic, and dielectric properties of Co–Zr co-doped hexagonal barium ferrites based on the sintering temperature and doping concentration. J Mater Sci: Mater Electron. 2021; 32(3): 2685-2695.
[32] Zhou K, Chen W, Zheng H, et al. Effects of Crystal Structure, Morphology and Ion Diffusion During Annealing on Magnetic Properties of Hexagonal Barium Ferrite Films. Journal of Elec Materi. 2021; 50(8): 4819-4826.
[33] Feng Q, Chen Z, Zhou K, Sun M, Ji X, Zheng H, Zhang Y. Hydrothermal Synthesis of γ‐Fe 2 O 3 /rGO Hybrid Nanocomposite as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemistrySelect. 2021; 6(31): 8177-8181.
[34] Sun M, Zhou K, Ji X, Zheng H, Zhang Y. Growth of Y3Fe5O12-BaFe12O19 nanocomposite film with high remanence ratio for its exchange spring coupling behavior. Chemical Physics Letters. 2021; 784: 139113.
[35] Ji X, Chen T, Shen C, Shen C, Zhao Y, Zhou K, Sun M, Yu Y, Fan L, Zheng H, Wu Q, Zhang Q, Zhang Y. Magnetic and dielectric properties of NiCuZn ferrite with optimized Cu content and sintered by a two-step process. Journal of Alloys and Compounds. 2022; 898: 162906.
[36] Ji X, Zhou K, Zhao Y, Sun M, Dong S, Zhang H, Cao H, Zheng H, Wu Q, Zhang Y. Crystal Structure, Magnetic, Dielectric and Ferromagnetic Resonance Properties of Pr-Zn‐Zr Co-Doped Yttrium Iron Garnet. J Electron Mater. 2022; 51(3): 1180-1188.
[37] Ji X, Shen C, Zhao Y, Zheng H, Wu Q, Zhang Q, Zheng L, Zheng P, Zhang Y. Enhanced electromagnetic properties of low-temperature sintered NiCuZn ferrites by doping with Bi2O3. Ceramics International. 2022; 48(14): 20315-20323.
[38] Chen W, Zheng H, Zheng P, et al. Nanohybrids that consisit of p-type, nitrogen-doped ZnO and graphene nanostructures: synthesis, photophysical properties, and biosensing application. Nanotechnology. 2022; 33(34): 345707.
[39] Zhang L, Xie B, Chen W, Fan L, Zheng H, Wu Q, Zheng P, Zheng L, Zhang Y. Resistive switching behaviours of Pt/Ni0. 5Zn0. 5Fe2O4/Pt based on film thickness for memristor applications. Ceramics International. 2023; 49(2): 2991-2997.
[40] Shen C, Zhao Y, Ji X, Dong S, Zheng H, Hu J, Zheng L. Microstructure and electromagnetic properties of low-temperature sintered NiCuZn ferrite by co-doped Bi2O3 and Co2O3. J Mater Sci: Mater Electron. 2023; 34(2): 154.
[41] Dong S, Li R, Wu J, Zhong W, Zhao Y, Ji X, Zheng H, Zheng P, He H, Zheng L. Microstructure and electromagnetic of tantalum substituted W-type hexagonal barium ferrite based on doping concentration. J Mater Sci: Mater Electron. 2023; 34(9): 837.
[42] Xie B, Zhou X, Chen W, Fan L, Zhang L, Li R, Zheng H, Wu Q, Wu Y, Lin Y, Zheng P, Zheng L, Zhang Y. High remanence ratio of aluminum substituted hexagonal barium ferrite films for self-biased microwave devices. Journal of Alloys and Compounds. 2023; 938: 168710.
[43] Chen W, Qian J, Peng S, Fan L, Zheng H, Zhang Z, Zheng P, Zheng L, Zhang Y. Thermal properties of tungsten/tungsten carbide-coated double-size diamond/copper composite. Diamond and Related Materials. 2023; 135: 109818.
[44] Zheng H, Li R, Dong S, et al. Iron carbide interface modulating for synergies of 3D-graphene-like and iron-coated Fe3O4 particles for high microwave absorption performance. Journal of Alloys and Compounds. 2023; 945: 169283.
[45] Guo X, Yuan F, Wang P, Li R, Zheng H. A CoFe 2 Alloy‐Functionalized Few‐Layer Graphene Sheet Nanocomposite as an Electrocatalyst of the Oxygen Reduction Reaction. ChemistrySelect. 2023; 8(33): e202301789.
[46] Chen W, Yuan F, Guo X, Chen F, Fan L, Zheng H, Guo X, Zheng P, Zheng L, Zhang Y. Enhancing performance of nitrogen-doped graphene nano-catalyst for oxygen reduction reaction by Ag loading. International Journal of Hydrogen Energy. 2024; 59: 375-382.