头像

郑辉 副教授

电子信息学院(集成电路科学与工程学院)

职务:

毕业院校: 电子科技大学
邮件: zhenghui0551@hdu.edu.cn
办公地点: 下沙校区8教3001
电话:

10 访问

个人简介

郑辉,博士,副教授,中共党员,安徽合肥人。2016年获得电子科技大学(成都)电子科学与技术专业博士学位,同年进入bob电竞ios 任教至今。电子科学与技术专业系主任,磁性材料与器件专家委员会会员,《磁性材料及器件》青年编委,《Symmetry》的客座编辑。主要研究方向包括自偏置微波器件、超级导体、功率器件热管理、冷阴极场发射器件等。

获浙江省科学技术奖三等奖1项,华为技术挑战难题鼓励奖1项。主持获批国家自然科学基金项目1项,国家国防科技工业局稳定支持项目1项,校级卓越科研育人项目(重点)1项,多项横向课题,作为第二负责人完成国防创新特区项目1项,作为主要参与人完成多项国防军工项目以及自然科学基金。长期担任CERAM INTJACSJ ALLOY COMPDNanotechnologyJAP等国际学术期刊审稿人。近5年在ACS NanoApplied Materials TodayApplied Physics Letter等期刊发表SCI论文60余篇,授权相关发明专利20余项。近5年指导本科生获得3项国家级大创项目、3项省新苗项目、1次省大学生挑战杯金奖,指导本科生以第一作者发表SCI论文20余篇,获得本科生毕业设计优秀指导教师称号。



一、代表性学术论文

[1] Zhiwen Ding, Lining Fan, Wei Chen, Hui Zheng*, Xiaoxiao Guo, Peng Zheng, Liang Zheng*,  Yang Zhang*. Current carrying capacity and failure mechanism of nitrogen-doped  graphene/copper composite film[J] Applied Materials Today 35 (2023) 101954 

[2]Wei Chen, Hui Zheng*, Lining Fan, Jiaxin Li, Zhiwen Ding, Xiaoxiao Guo, Feimei Wu, Xiao Wang*, Peng Zheng , Liang Zheng, Yang Zhang*. Graphene/copper composite fflms: Interface regulation for enhanced  electrical performance[J]. Materials Characterization 210 (2024) 113790 

[3] Yuede Nan, Jiahao Zhang, Yuxin Pan, Xinrong Ren, Lixin Zhang, Hui Zheng* Regulated resistive switching behaviors of Pt/Ni0.5Zn0.5Fe2O4/Pt composite  films by oxygen pressure[J] Ceramics International 50 (2024) 16481–16488 

[4]Hui Zheng, Qingqing Chu, Peng Zheng, Liang Zheng, Xiaolong Zheng, Lihuan Shao, Feimei Wu, Zhangting Wu, Yuan Jiang, and Yang Zhang[J] Nitrogen-Doped Few-Layer Graphene Grown Vertically on a Cu Substrate via C60/Nitrogen Microwave Plasma and Its Field Emission Properties The Journal of Physical Chemistry C 2020 124 (39), 21684-21691.

[5]Wei Chen, Jun Qian, Shuyao Peng, Lining Fan, Hui Zheng*, Zhongzheng Zhang,  Peng Zheng, Liang Zheng, Yang Zhang* Thermal properties of tungsten/tungsten carbide-coated double-size  diamond/copper composite  Diamond & Related Materials 135 (2023) 109818 


教育经历
工作经历
社会职务
研究领域
教学与课程
纵向科研

主持完成1项国家自然科学基金青年项目、主持完成1项科工局稳定支持项目、作为第二负责人完成2项JKW项目,参与多项国家和省级课题。


横向科研
论文

[1]     Zheng H, Han M, Zheng P, Zheng L, Qin H, Deng L. Porous silicon templates prepared by Cu-assisted chemical etching. Materials Letters. 2014; 118: 146-149.

[2]     Zheng H, Zhou JJ, Deng JX, et al. Preparation of two-dimensional yttrium iron garnet magnonic crystal on porous silicon substrate. Materials Letters. 2014; 123: 181-183.

[3]     Zheng H, Qin HB, Zheng P, Deng JX, Zheng L, Han MG. Preparation of low ferromagnetic resonance linewidth yttrium iron garnet films on silicon substrate. Applied Surface Science. 2014; 307: 661-664.

[4]     Zheng H, Han M, Deng J, et al. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template. Applied Surface Science. 2014; 311: 672-675.

[5]     Qian YW, Deng JX, Zheng H, Zheng P, Zheng L, Qin HB. Influence of Oxygen Pressure on the Properties of Ni-Mn-Zn Ferrite Films on Silicon Substrate. Journal of Elec Materi. 2014; 43(11): 4289-4293.

[6]     Zheng H, Han M, Zheng L, et al. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate. Applied Physics Letters. 2015; 107(6): 062401.

[7]    Zheng H, Han M, Wu Y, Zhao W, Deng L. Magnetic properties of hexagonal barium ferrite films on Pt(111)/Al2O3(0001) substrate based on optimized thickness of Pt. In: 2016 IEEE International Nanoelectronics Conference (INEC). IEEE; 2016: 1-2.

[8]     Zheng H, Han MG, Deng LJ. Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties. Chinese Phys B. 2016; 25(2): 026201.

[9]     Li XX, Zhou JJ, Deng JX, Zheng H, Zheng L, Zheng P, Qin HB. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering. Journal of Elec Materi. 2016; 45(10): 4973-4978.

[10]  Zheng H, Zheng L, Zheng P, Deng JX, Ying ZH, Qin HB. Effect of Pt buffer layer on crystal structure and magnetic properties of hexagonal barium ferrite films. Materials Letters. 2017; 190: 263-265.

[11]  Xu Z, Zheng H, Han MG. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd 3 Ga 5 O 12 substrate. Chemical Physics Letters. 2017; 680: 90-93.

[12]  Chen RY, Zhou JJ, Zheng L, Zheng H, Zheng P, Ying ZH, Deng JX. Two-Step Sintering Behavior of Sol–Gel Derived Dense and Submicron-Grained YIG Ceramics. Journal of Elec Materi. 2018; 47(4): 2411-2416.

[13]  Shen SY, Zheng H, Zheng P, et al. Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met. 2018; 40(4): 981-986.

[14]  Zheng H, Zheng P, Feng Q, Deng J, Ying Z, Zheng L. Oriented of micron-thick Y3Fe5O12 film on Gd3Ga5O12 substrate based on layer by layer growth method. Materials Letters. 2018; 218: 241-244.

[15]  Shao LH, Shen SY, Zheng H, Zheng P, Wu Q, Zheng L. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic. Journal of Elec Materi. 2018; 47(7): 4085-4089.

[16]  Zhou E, Zheng H, Zheng L, et al. Synthesis of dense, fine‐grained hexagonal barium ferrite ceramics by two‐step sintering process. Int J Applied Ceramic Tech. 2018; 15(4): 1023-1029.

[17]  Zheng H, Zheng P, Wu Q, et al. Tens of micron-thick, crack-free yttrium iron garnet films on a Gd3Ga5O12 substrate based on the layer by layer growth method. J Mater Sci: Mater Electron. 2018; 29(14): 11790-11794.

[18]  Li K, Zheng H, Zheng P, et al. Crack-free Y3Fe5O12 films deposited on Si substrate obtained by two-step annealing process. Materials Letters. 2018; 228: 21-24.

[19]  Guo Q, Zheng H, Zheng L, Zheng P, Wu Q. Target grain size dependence of the morphology, crystallinity and magnetic properties of yttrium iron garnet films. Ceramics International. 2019; 45(3): 3414-3418.

[20]  Zheng H, Han Mangui, Deng L, et al. Erratum to “Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures”[J. Magn. Magn. Mater. 413(2016) 25–29]. Journal of Magnetism and Magnetic Materials. 2019; 476: 632.

[21]  Zheng H, Luo J, Wu Q, et al. Hexagonal barium ferrite films on a Pt(1 1 1)/Si(0 0 1) substrate and their local magnetic properties. Journal of Magnetism and Magnetic Materials. 2019; 479: 99-104.  

[22]  Luo J, Zheng H, Deng J, et al. Micromagnetic simulation of dynamic magnetic susceptibility and magnetostatic interaction fields of conical-shaped barium ferrite nanodot arrays. J Phys D: Appl Phys. 2019; 52(40): 405001.

[23]  Guo QW, Zheng H, Zheng L, Deng JX, Zheng P, Wu Q. Morphology, Crystal Structure and Ferromagnetic Resonance Properties of Submicron-Thick Yttrium Iron Garnet Films Prepared by Pulsed Laser Deposition. Journal of Elec Materi. 2019; 48(8): 4850-4855.  

[24]  Fan LN, Zheng H, Shen SY, et al. Film-Thickness Dependence of the Morphology, Crystal Structure and Magnetic Properties of BaFe12O19 Films Prepared by Pulsed Laser Deposition. Journal of Elec Materi. 2019; 48(9): 5717-5722.

[25]  Luo J, Zheng H, Chen W, et al. Conical-shaped hexagonal barium ferrite nanodot arrays on an alumina substrate based on an ultrathin alumina mask method. Journal of Magnetism and Magnetic Materials. 2019; 489: 165449.

[26]  Cao H, Zheng H, Fan L, et al. Structural, morphological, dielectric and magnetic properties of Zn‐Zr co‐doping yttrium iron garnet. Int J Applied Ceramic Tech. 2020; 17(2): 813-822.

[27]  Chen W, Zheng H, Hu D, et al. Fabrication of CoFe2O4 Nanowire Using a Double-Pass Porous Alumina Template with a Large Range of Pore Diameters. Crystals. 2020; 10(4): 331.

[28]  Wei X, Zheng H, Chen W, et al. Crystal structure, morphology and magnetic properties of hexagonal M-type barium ferrite film based on the substrate temperature. Chemical Physics Letters. 2020; 752: 137541.

[29]  Zheng H, Chu Q, Zheng P, et al. Nitrogen-Doped Few-Layer Graphene Grown Vertically on a Cu Substrate via C 60 /Nitrogen Microwave Plasma and Its Field Emission Properties. J Phys Chem C. 2020; 124(39): 21684-21691.

[30]  Fan L, Zheng H, Zhou X, et al. A comparative study of microstructure, magnetic, and electromagnetic properties of Zn2W hexaferrite prepared by sol–gel and solid-state reaction methods. J Sol-Gel Sci Technol. 2020; 96(3): 604-613.

[31]  Zhang H, Fan L, Cao H, Yu Y, Zhang T, Feng Q, Zheng H, Wu Q, Zhang Y. Microstructure, magnetic, and dielectric properties of Co–Zr co-doped hexagonal barium ferrites based on the sintering temperature and doping concentration. J Mater Sci: Mater Electron. 2021; 32(3): 2685-2695.

[32]  Zhou K, Chen W, Zheng H, et al. Effects of Crystal Structure, Morphology and Ion Diffusion During Annealing on Magnetic Properties of Hexagonal Barium Ferrite Films. Journal of Elec Materi. 2021; 50(8): 4819-4826.

[33]  Feng Q, Chen Z, Zhou K, Sun M, Ji X, Zheng H, Zhang Y. Hydrothermal Synthesis of γ‐Fe 2 O 3 /rGO Hybrid Nanocomposite as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemistrySelect. 2021; 6(31): 8177-8181.

[34]  Sun M, Zhou K, Ji X, Zheng H, Zhang Y. Growth of Y3Fe5O12-BaFe12O19 nanocomposite film with high remanence ratio for its exchange spring coupling behavior. Chemical Physics Letters. 2021; 784: 139113.

[35]  Ji X, Chen T, Shen C, Shen C, Zhao Y, Zhou K, Sun M, Yu Y, Fan L, Zheng H, Wu Q, Zhang Q, Zhang Y. Magnetic and dielectric properties of NiCuZn ferrite with optimized Cu content and sintered by a two-step process. Journal of Alloys and Compounds. 2022; 898: 162906.

[36]  Ji X, Zhou K, Zhao Y, Sun M, Dong S, Zhang H, Cao H, Zheng H, Wu Q, Zhang Y. Crystal Structure, Magnetic, Dielectric and Ferromagnetic Resonance Properties of Pr-Zn‐Zr Co-Doped Yttrium Iron Garnet. J Electron Mater. 2022; 51(3): 1180-1188.

[37]  Ji X, Shen C, Zhao Y, Zheng H, Wu Q, Zhang Q, Zheng L, Zheng P, Zhang Y. Enhanced electromagnetic properties of low-temperature sintered NiCuZn ferrites by doping with Bi2O3. Ceramics International. 2022; 48(14): 20315-20323.

[38]  Chen W, Zheng H, Zheng P, et al. Nanohybrids that consisit of p-type, nitrogen-doped ZnO and graphene nanostructures: synthesis, photophysical properties, and biosensing application. Nanotechnology. 2022; 33(34): 345707.

[39]  Zhang L, Xie B, Chen W, Fan L, Zheng H, Wu Q, Zheng P, Zheng L, Zhang Y. Resistive switching behaviours of Pt/Ni0. 5Zn0. 5Fe2O4/Pt based on film thickness for memristor applications. Ceramics International. 2023; 49(2): 2991-2997.

[40]  Shen C, Zhao Y, Ji X, Dong S, Zheng H, Hu J, Zheng L. Microstructure and electromagnetic properties of low-temperature sintered NiCuZn ferrite by co-doped Bi2O3 and Co2O3. J Mater Sci: Mater Electron. 2023; 34(2): 154.

[41]  Dong S, Li R, Wu J, Zhong W, Zhao Y, Ji X, Zheng H, Zheng P, He H, Zheng L. Microstructure and electromagnetic of tantalum substituted W-type hexagonal barium ferrite based on doping concentration. J Mater Sci: Mater Electron. 2023; 34(9): 837.

[42]  Xie B, Zhou X, Chen W, Fan L, Zhang L, Li R, Zheng H, Wu Q, Wu Y, Lin Y, Zheng P, Zheng L, Zhang Y. High remanence ratio of aluminum substituted hexagonal barium ferrite films for self-biased microwave devices. Journal of Alloys and Compounds. 2023; 938: 168710.

[43]  Chen W, Qian J, Peng S, Fan L, Zheng H, Zhang Z, Zheng P, Zheng L, Zhang Y. Thermal properties of tungsten/tungsten carbide-coated double-size diamond/copper composite. Diamond and Related Materials. 2023; 135: 109818.

[44]  Zheng H, Li R, Dong S, et al. Iron carbide interface modulating for synergies of 3D-graphene-like and iron-coated Fe3O4 particles for high microwave absorption performance. Journal of Alloys and Compounds. 2023; 945: 169283.

[45]  Guo X, Yuan F, Wang P, Li R, Zheng H. A CoFe 2 Alloy‐Functionalized Few‐Layer Graphene Sheet Nanocomposite as an Electrocatalyst of the Oxygen Reduction Reaction. ChemistrySelect. 2023; 8(33): e202301789.

[46]  Chen W, Yuan F, Guo X, Chen F, Fan L, Zheng H, Guo X, Zheng P, Zheng L, Zhang Y. Enhancing performance of nitrogen-doped graphene nano-catalyst for oxygen reduction reaction by Ag loading. International Journal of Hydrogen Energy. 2024; 59: 375-382.


科研成果

主持完成1项国家自然科学基金青年项目、主持完成1项科工局稳定支持项目、作为第二负责人完成2项JKW项目,参与多项国家和省级课题。


著作
专利成果

近5年,授权发明专利14项。

(1) 郑辉; 罗俊; 张阳; 郑鹏; 郑梁 ; 一种计算磁性颗粒间静磁相互作用场强度的方法, 2022-11-11, 中 国, CN201910214969.1 (专利) 

(2) 郑辉; 张鸿波; 张阳; 郑梁; 郑鹏 ; 一种三步烧结法制备致密的小晶粒BaFe12O19铁氧体陶瓷的制备 方法, 2022-09-13, 中国, CN202011546944.0 (专利)

(3) 郑辉; 周珂; 张阳; 郑梁; 郑鹏 ; 一种柔性透明场发射冷阴极的制备方法, 2022-08-12, 中国, CN202011593091.6 (专利) 

(4) 郑辉; 张飞; 郑鹏; 郑梁 ; 一种Ka波段双面铁氧体薄膜微带线环行器, 2021-01-29, 中国, CN201810814873.4 (专利) 

(5) 郑辉; 李润秋; 郑鹏; 郑梁; 张阳 ; 一种石墨烯复合纳米六角钡铁氧体吸波材料制备方法, 2021-09- 26, 中国, CN202111132442.8 (专利) 

(6) 郑辉; 陈伟; 郑梁; 郑鹏; 张阳 ; 一种高电阻率基底上多孔氧化铝模板的制备方法, 2020-12-08, 中 国, CN201910150917.2 (专利) 

(7) 郑辉; 刘佩森; 郑鹏; 吴建锋; 郑梁 ; 一种Ka波段叠层式薄膜铁氧体微带环行器, 2017-6-30, 中国, CN201710519437.X (专利) (8) 冀欣然; 孙美玲; 周珂; 郑辉; 张阳 ; 一种基于LTCC技术的NiCuZn铁氧体制备方法, 2023-02-28, 中 国, CN202110943087.6 (专利) 

(9) 董施君; 郑辉; 吴骏鹏 ; 一种高价态Ta掺杂W型钡铁氧体吸波材料的制备方法, 2021-12-30, 中国, CN202111658348.6 (专利) 

荣誉及奖励
软件成果