![]() |
郑鹏职称: 副教授 毕业院校:山东大学 邮件: zhengpeng@hdu.edu.cn 办公地点: 职务: 教务处副处长兼继续教育管理中心副主任 研究方向: |
个人概况 研究领域 教学与课程 科研项目 科技成果 论文与著作 荣誉及奖励 |
![]() |
郑鹏职称: 副教授 毕业院校:山东大学 邮件: zhengpeng@hdu.edu.cn 办公地点: 职务: 教务处副处长兼继续教育管理中心副主任 研究方向: |
最新更新
|
2010年博士毕业于山东大学,同年进入bob电竞ios 工作,曾任电子信息学院院长助理、电子科学与技术专业系主任,现任bob电竞ios 教务处副处长兼继续教育管理中心副主任。主持完成国家自然科学基金1项,浙江省自然科学基金1项,参与国家自然科学基金3项、浙江省自然科学基金2项,浙江省科技计划公益项目2项,横向项目多项;多次参加国际国内重大学术会议并做报告,发表论文70余篇,其中指导研究生一作发表SCI论文30余篇,指导本科生一作发表SCI论文7篇;担任硕导以来,已培养硕士研究生12人,其中5人获得国家奖学金,1人获得华为奖学金;指导本科生获浙江省芯苗计划项目2项,挑战杯省赛三等奖1项,多名本科生获得研究生推免资格保送清华、西交、西电等高校。
每年招收硕士研究生3-4名,招收本科生3-4名,欢迎邮件咨询! 教育经历
工作经历
2023年5月-至今,bob电竞ios ,教务处副处长兼继续教育管理中心副主任 2020年5月-2023年5月,bob电竞ios ,电子信息学院院长助理 2019年9月-2023年5月,bob电竞ios ,电子信息学院电子科学与技术系系主任 2015年1月- 至今,bob电竞ios ,电子信息学院,副教授 2010年7月- 2014年12月,杭州电子科技大学,电子信息学院,讲师 社会职务
|
研究领域
先进电子材料与器件 |
教学与课程
主讲课程: 本科生课程:《固体物理》、《电子材料与电子器件实验》 研究生课程:《高等固体物理》《电子材料制备与表征实践》 教学改革: 省级线下一流本科课程,固体物理(甲),2022,主持; 浙江省“十四五”研究生课程思政示范课程,高等固体物理,2022,主持; 浙江省“十四五”教改项目,新工科背景下“电子科学与技术”国家一流专业科研育人路径研究与实践,2022,主持; 校线上课程培育项目,固体物理,2021,主持; 校高等教育教改重点项目,基于专业科技训练营的电子科学与技术专业学生创新创业能力培养探索,2020,主持; 校优秀“课程思政”改革建设项目,固体物理(甲),2019,主持; |
横向科研
|
纵向科研
|
专利成果
|
软件成果
|
论文
2024: [58] Si P X K, Zheng P, Zhang X Z, Luo C, Zheng X T, Fan Q L, Bai W F, Zhang J J, Zheng L, Zhang Y. Synergistic modulation of ferroelectric polarization and relaxor behavior of Sr<sub>2</sub>NaNb<sub>5</sub>O<sub>15</sub>-based tungsten bronze ceramic [J]. International Journal of Applied Ceramic Technology, 2024, 21(1): 532-43. [57] Zhou J Y, Zheng P, Bai W F, Fan Q L, Zheng L, Zhang Y. Breaking the Mutual Constraint between Polarization and Voltage Resistance with Nanograined High-Entropy Ceramic [J]. Acs Appl Mater Inter, 2024, 16(2): 2530-8. 2023: [56] Li C Y, Liu J K, Lin L, Bai W F, Wu S T, Zheng P, Zhang J J, Zhai J W. Superior Energy Storage Capability and Stability in Lead-Free Relaxors for Dielectric Capacitors Utilizing Nanoscale Polarization Heterogeneous Regions [J]. Small, 2023, 19(12). [55] Lin Y Z, Wan R F, Zheng P, Li Z H, Wang Y K, Fan Q L, Zheng L, Zhang Y, Bai W F. Achieving Remarkable Energy Storage Performances under Low Electric Field in Bi<sub>0.5</sub>N<sub>0.5</sub>TiO<sub>3</sub>-SrTiO<sub>3</sub>-Based Relaxor Ferroelectric Ceramics via a Heterostructure Doping Strategy [J]. Acs Applied Electronic Materials, 2023, 5(8): 4576-86. [54] Liu J K, Ding Y Q, Li C Y, Bai W F, Zheng P, Wu S T, Zhang J J, Pan Z B, Zhai J W. A synergistic two-step optimization design enables high capacitive energy storage in lead-free Sr<sub>0.7</sub>Bi<sub>0.2</sub>TiO<sub>3</sub>-based relaxor ferroelectric ceramics [J]. Journal of Materials Chemistry A, 2023, 11(2): 609-20. [53] Luo C, Zheng X T, Zheng P, Du J, Niu Z, Zhang K, Bai W F, Fan Q L, Zheng L, Zhang Y. Realizing excellent energy storage performances in tetragonal tungsten bronze ceramics via a B-site engineering strategy [J]. J Alloy Compd, 2023, 933. [52] Ye W B, Zhu C H, Xiao Y M, Bai X Z, Zheng P, Zhang J J, Bai W F, Fan Q L, Zheng L, Zhang Y. Remarkable energy-storage performances and excellent stability in CaTiO3-doped BiFeO3-BaTiO3 relaxor ferroelectric ceramics [J]. J Eur Ceram Soc, 2023, 43(3): 900-8. [51] Yu K C, Zhang X Z, Zhong W T, Zheng P, Fan Q L, Zheng L, Zhang Y, Bai W F. Relaxor regulation and enhancement of energy storage properties in bi-modified Sr<sub>2</sub>NaNb<sub>5</sub>O<sub>15</sub>-based tetragonal tungsten bronze ceramics [J]. J Mater Sci-Mater Electron, 2023, 34(31). 2022: [50] Zhu C H, Ye W B, Zheng P, Zhang H F, Lu F, Fan Q L, Zhang J J, Zheng L, Zhang Y, Bai W F. Fantastic Energy Storage Performances and Excellent Stability in BiFeO3-SrTiO3-Based Relaxor Ferroelectric Ceramics [J]. Acs Applied Energy Materials, 2022, 5(7). [49] Zhu C H, Chen A X, Liu Y, Zheng P, Bai W F, Fan Q L, Zheng L, Zhang Y. Realizing Enhanced Electrical Properties of CaBi2Nb2O9-Based High-Temperature Piezoceramics by Constructing a Pseudophase Boundary [J]. Acs Applied Electronic Materials, 2022, 4(7): 3598-605. [48] Zheng L, Niu Z, Zheng P, Zhang K, Luo C, Zhang J, Wang N, Bai W, Zhang Y. Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi0.5K0.5TiO3-based ceramics [J]. Materials Today Energy, 2022, 28: 101078. [47] Zhang K, Zheng P, Zhang H F, Niu Z, Luo C, Bai W F, Zhang J J, Zheng L, Zhang Y. Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions [J]. Ceram Int, 2022, 48(14): 19864-73. [46] Niu Z, Zheng P*, Xiao Y, Luo C, Zhang K, Zhang J, Zheng L, Zhang Y, Bai W*. Bi0.5K0.5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering [J]. Materials Today Chemistry, 2022, 24. [45] Liu J, Li P, Li C, Bai W*, Wu S, Zheng P*, Zhang J, Zhai J*. Synergy of a Stabilized Antiferroelectric Phase and Domain Engineering Boosting the Energy Storage Performance of NaNbO3-Based Relaxor Antiferroelectric Ceramics [J]. Acs Appl Mater Inter, 2022, 14(15): 17662-73. [44] Li CY, Liu JK, Bai W*, Wu ST, Zheng P*, Zhang J, Pan ZB, Zhai J*. Superior energy storage performance in (Bi0.5Na0.5)TiO3-based lead-free relaxor ferroelectrics for dielectric capacitor application via multiscale optimization design [J]. Journal of Materials Chemistry A, 2022, 10(17): 9535-46. [43] Ding Y, Li P, He J, Que W, Bai W*, Zheng P*, Zhang J, Zhai J*. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering [J]. Composites Part B: Engineering, 2022, 230: 109493. [42] Li C, Xiao Y, Fu T, Zheng L*, Zheng P*, Bai W, Li L, Wen F, Zhang J, Zhang Y. High Capacitive Performance Achieved in NaNbO3-Based Ceramics via Grain Refinement and Relaxation Enhancement [J]. Energy Technology, 2022, 10(2): 2100777. [41] Luo C, Zhu C, Liang Y, Zheng P*, Bai W*, Li L, Wen F, Zhang J, Zheng L, Zhang Y. Promoting Energy Storage Performance of Sr0.7Ba0.3Nb2O6 Tetragonal Tungsten Bronze Ceramic by a Two-Step Sintering Technique [J]. ACS Applied Electronic Materials, 2022, 4(1): 452-60. [40] Zhang X, Zheng P*, Li L, Wen F, Bai W*, Zhang J, Zheng L, Zhang Y. High energy storage performance in tungsten bronze-based relaxor ceramic via doping with CuO [J]. Scripta Mater, 2022, 211: 114514. 2021: [39] Chen AX, Chen ZN, Liu Y, Zheng P*, Bai WF, Li LL, Wen F, Zheng L, Zhang Y. Enhanced electrical properties in W/Cu co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics [J]. International Journal of Applied Ceramic Technology, 2021, 18(6): 2111-20. [38] Liu Y, Yu Y, Yin CY, Zheng L*, Zheng P*, Bai WF, Li LL, Wen F, Zhang Y. Achieving remarkable piezoelectric activity in Sb-Mn co-modified CaBi4Ti4O15 piezoelectric ceramics [J]. T Nonferr Metal Soc, 2021, 31(8): 2442-53. [37] Bai XZ, Chen ZT, Zheng P*, Bai WF*, Zhang JJ, Li LL, Wen F, Zheng L, Zhang Y. High recoverable energy storage density in nominal (0.67-x) BiFeO3-0.33BaTiO(3-x)BaBi(2)Nb(2)O(9) lead-free composite ceramics [J]. Ceram Int, 2021, 47(16): 23116-23.(本科生论文4) [36] Ding Y, Liu J, Li C, Bai W*, Wu S, Zheng P*, Zhang J, Zhai J*. High capacitive performance at moderate operating field in (Bi0.5Na0.5)TiO3-based dielectric ceramics via synergistic effect of site engineering strategy [J]. Chem Eng J, 2021, 426: 130811. [35] Liu JK, Ding YQ, Li CY, Bai WF*, Zheng P*, Zhang JJ, Zhai JW*. Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramic with remarkable comprehensive energy storage performance under low electric field for capacitor applications [J]. J Mater Sci-Mater Electron, 2021, 32(16): 21164-77. [34] Wang H, Bu X, Zhang X, Zheng P*, Li L, Wen F, Bai W*, Zhang J*, Zheng L, Zhang Y. Pb/Bi-free Tungsten Bronze-Based Relaxor Ferroelectric Ceramics with Remarkable Energy Storage Performance [J]. ACS Applied Energy Materials, 2021, 4(9): 9066-76.(本科生论文3) [33] Wu W, Han Y, Huang X, Du J, Bai W, Wen F, Wu W, Zheng P*, Zheng L, Zhang Y. Electrical properties of a Cr2O3-modified Na0.5Bi4.5Ti4O15-Na0.5Bi0.5TiO3 composite ceramic [J]. Journal of the Australian Ceramic Society, 2021, 57(2): 321-6.(本科生论文2) [32] Zhang X, Wang H, Bu X, Zheng P*, Li L, Wen F, Bai W*, Zhang J*, Zheng L, Zhai J, Zhang Y. Simultaneously Realizing Superior Energy Storage Properties and Outstanding Charge-Discharge Performances in Tungsten Bronze-Based Ceramic for Capacitor Applications [J]. Inorganic chemistry, 2021, 60(9): 6559-68. [31] Zhang X, Ye W, Bu X, Zheng P*, Li L, Wen F, Bai W*, Zheng L, Zhang Y. Remarkable capacitive performance in novel tungsten bronze ceramics [J]. Dalton T, 2021, 50(1): 124-30. [30] Zhao XY, Li CY, Liu JK, Ding YQ, Bai WF*, Zheng P*, Li P, Zhang JJ, Zhai JW. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with simultaneous high energy storage properties and remarkable charge-discharge performances under low working electric fields for dielectric capacitor applications [J]. Ceram Int, 2021, 47(18): 25800-9. [29] Zheng L, Sun P, Zheng P*, Bai W*, Li L, Wen F, Zhang J, Wang N, Zhang Y*. Significantly tailored energy-storage performances in Bi0.5Na0.5TiO3–SrTiO3-based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi2Nb2O9 for capacitor application [J]. Journal of Materials Chemistry C, 2021, 9(15): 5234-43. 2020: [28] Bai W*, Zhao X, Ding Y, Wang L, Zheng P*, Hao J, Zhai J*. Giant Field-Induced Strain with Low Hysteresis and Boosted Energy Storage Performance under Low Electric Field in (Bi0.5Na0.5)TiO3-Based Grain Orientation-Controlled Ceramics [J]. Advanced Electronic Materials, 2020, 6(9): 2000332. [27] Bai W*, Zhao X, Huang Y, Ding Y, Wang L, Zheng P*, Li P, Zhai J*. Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics [J]. Dalton T, 2020, 49(25): 8661-71. [26] Chen Z, Bai X, Wang H, Du J, Bai W*, Li L, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Achieving high-energy storage performance in 0.67Bi1-xSmxFeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics [J]. Ceram Int, 2020, 46(8, Part B): 11549-55. [25] Chen Z, Bu X, Ruan B, Du J, Zheng P*, Li L, Wen F, Bai W*, Wu W, Zheng L, Zhang Y. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. J Eur Ceram Soc, 2020, 40(15): 5450-7. [24] Chen Z, Zhang Y, Huang P, Li X, Du J, Bai W, Li L, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Enhanced piezoelectric properties and thermal stability in Mo/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics [J]. J Phys Chem Solids, 2020, 136: 109195. [23] Li XD, Zhu LL, Huang PM, Chen ZN, Bai WF, Li LL, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Reduction of oxygen vacancy concentration and large enhancement of electrical performances in Cu/Sb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics [J]. J Appl Phys, 2020, 127(4): 044102 [22] Sun PC, Wang HL, Bu XY, Chen ZT, Du J, Li LL, Wen F, Bai WF*, Zheng P*, Wu W, Zheng L, Zhang Y. Enhanced energy storage performance in bismuth layer-structured BaBi2Me2O9 (Me = Nb and Ta) relaxor ferroelectric ceramics [J]. Ceram Int, 2020, 46(10): 15907-14. [21] Wang L, Bai W*, Zhao X, Ding Y, Wen F, Li L, Wu W, Zheng P*, Zhai J*. Tailoring electromechanical performance in BiScO3-modified Bi0.5Na0.5TiO3-based lead-free piezoceramics [J]. J Mater Sci-Mater El, 2020, 31(2): 1491-501. [20] Wang L, Bai W*, Zhao X, Ding Y, Wu S, Zheng P*, Li P, Zhai J*. Influences of rare earth site engineering on piezoelectric and electromechanical response of (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free ceramics [J]. J Mater Sci-Mater El, 2020, 31(9): 6560-73. [19] Zhang Y, Huang P, Zhu L, Du J, Bai W, Lin M*, Zheng P*, Zheng L, Zhang Y. Doping level effects in Nb self-doped Bi3TiNbO9 high-temperature piezoceramics with improved electrical properties [J]. International Journal of Applied Ceramic Technology, 2020, 17(5): 2407-15.(本科生论文1) [18] Zhao X, Bai W*, Ding Y, Wang L, Wu S, Zheng P*, Li P, Zhai J*. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics [J]. J Eur Ceram Soc, 2020, 40(13): 4475-86. 2009-2019: [17] Wang L, Bai W*, Zhao X, Wen F, Li L, Wu W, Zheng P*, Zhai J*. Enhanced temperature stability and tailored electromechanical response in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoceramics through rare earth modification [J]. J Mater Sci-Mater El, 2019, 30(10): 9219-30. [16] Liu Y, Huang PM, Zhang YH, Du J, Bai WF, Li LL, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Improved electrical properties in Nb/Fe co-modified CaBi4Ti4O15 high-temperature piezoceramics [J]. Mater Res Express, 2019, 6(12): 126334. [15] Li X, Chen Z, Sheng L, Li L, Bai W, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics [J]. J Eur Ceram Soc, 2019, 39(6): 2050-7. [14] Li X, Chen Z, Sheng L, Du J, Bai W, Li L, Wen F, Zheng P*, Wu W, Zheng L, Zhang Y. Large enhancement of piezoelectric properties and resistivity in Cu/Ta co-doped Bi4Ti3O12 high-temperature piezoceramics [J]. J Am Ceram Soc, 2019, 102(12): 7366-75. [13] Chen Z, Li X, Sheng L, Du J, Bai W, Li L, Wen F, Zheng P*, Wu W, Zheng L. Enhanced electrical properties in A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 high temperature piezoelectric ceramic [J]. J Mater Sci-Mater El, 2019, 30(12): 11727-34. [12] Sheng L, Du X, Chao Q, Zheng P*, Bai W, Li L, Wen F, Wu W, Zheng L. Enhanced electrical properties in Nd and Ce co-doped CaBi4Ti4O15 high temperature piezoceramics [J]. Ceram Int, 2018, 44(15): 18316-21. [11] Dai B, Zheng P*, Bai W, Wen F, Li L, Wu W, Ying Z, Zheng L. Direct and converse piezoelectric grain-size effects in BaTiO3 ceramics with different Ba/Ti ratios [J]. J Eur Ceram Soc, 2018, 38(12): 4212-9. [10] Yin R-Q, Dai B-W, Zheng P*, Zhou J-J, Bai W-F, Wen F, Deng J-X, Zheng L, Du J, Qin H-B. Pure-phase BiFeO3 ceramics with enhanced electrical properties prepared by two-step sintering [J]. Ceram Int, 2017, 43(8): 6467-71. [9] Dai B, Hu X, Yin R, Bai W, Wen F, Deng J, Zheng L, Du J, Zheng P*, Qin H. Piezoelectric grain-size effects of BaTiO3 ceramics under different sintering atmospheres [J]. J Mater Sci-Mater El, 2017, 28(11): 7928-34. [8] Yin RQ, Zheng P*, Wang JC, Dai BW, Zheng LM, Du J, Zheng L, Deng JX, Song KX, Qin HB. Structural and electrical properties of K-doped Sr1.85Ca0.15NaNb5O15 lead-free piezoelectric ceramics [J]. Ceram Int, 2016, 42(8): 10349-54. [7] Li XX, Zhou JJ, Deng JX, Zheng H, Zheng L, Zheng P*, Qin HB. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering [J]. J Electron Mater, 2016, 45(10): 4973-8. [6] Wang JC, Zheng P*, Yin RQ, Zheng LM, Du J, Zheng L, Deng JX, Song KX, Qin HB. Different piezoelectric grain size effects in BaTiO3 ceramics [J]. Ceram Int, 2015, 41(10, Part B): 14165-71. [5] Zheng P, Zhang R-z, Chen H-y, Hao W-t. Thermoelectric Properties and Conduction Mechanism of CaCu3Ti4O12 Ceramics at High Temperatures [J]. J Electron Mater, 2014, 43(6): 1645-9. [4] Zheng P, Zhang JL, Qin HB, Song KX, Wu J, Ying ZH, Zheng L, Deng JX. MnO2-Modified Ba(Ti,Zr)O-3 Ceramics with High Q (m) and Good Thermal Stability [J]. J Electron Mater, 2013, 42(6): 1154-7. [3] Zheng P, Song KX, Qin HB, Zheng L, Zheng LM. Piezoelectric activities and domain patterns of orthorhombic Ba(Zr,Ti)O-3 ceramics [J]. Curr Appl Phys, 2013, 13(6): 1064-8. [2] Zheng P, Zhang JL, Tan YQ, Wang CL. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics [J]. Acta Mater, 2012, 60(13-14): 5022-30. [1] Zheng P, Zhang JL, Shao SF, Tan YQ, Wang CL. Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O-3 ceramics [J]. Appl Phys Lett, 2009, 94(3). |
著作
|
荣誉及奖励
前沿引领、平台支撑、项目驱动—电子科学与技术专业科研育人实践与成效,bob电竞ios 教学成果一等奖,2023,1/8 需求牵引、实践驱动、数字赋能—电子信息类专业创新人才培养体系构建及成效,国家级教学成果二等奖,2023,14/15; 面向工程创新能力培养,构建电子类专业实践育人新体系,浙江省教学成果特等奖,2021,8/8 |
最新更新
|