
8
Applying Vibration Models

As we noted in Chapter 7, vibration is omnipresent in our lives, both in
people-made and living objects and devices. Vibration is also complex.
For example, sound is modeled as a sum of harmonics, of vibrations with
different periods or natural frequencies. Certainly buildings and cars and
airplanes and dentists’ drills vibrate in complex, multi-modal ways as well,
with a lot of modes having different frequencies and different amplitudes.
Given that life seems so complex, is it worth doing elementary vibration
modeling? Yes, it is, as so eloquently said by one of the great pioneers of the
field of vibration, Sir John William Strutt, third Baron Rayleigh, known
quite widely as Lord Rayleigh:

The material systems, with whose vibrations Acoustics is concerned, are usually of
considerable complication, and are susceptible of very various modes of vibration,
any or all of which may coexist at any particular moment. Indeed in some of the
most important musical instruments, as strings and organ-pipes, the number of
independent modes is theoretically infinite, and the consideration of several of them
is essential to the most practical questions relating to the nature of the consonant
chords. Cases, however, often present themselves, in which one mode is of paramount
importance; and even if this were not so, it would still be proper to commence the
consideration of the general problem with the simplest case—that of one degree of
freedom. It need not be supposed that the mode treated of is the only one possible,
because so long as vibrations of other modes do not occur their possibility under other
circumstances is of no moment.

Guided by Lord Rayleigh’s insight, we will continue to limit our discus- Why?

sion of models of vibratory behavior to those having but a single degree of
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212 Chapter 8 Applying Vibration Models

freedom. We will focus on two important elements. First, we develop the
mechanical-electrical analogy, wherein we make more explicit the several
commonalities of vibration behavior that we had identified in Chapter 7.
In our second focus, we note a dividing line that is extraordinarily powerful
for modeling vibration: some phenomena seem to go on indefinitely, quite
on their own, while others appear as responses to repetitive stimulation.
Thus far, our models have been in the first category, called free or unforced
vibration, referring to phenomena that continue after some initial jolt gets
them going. It includes the vibration of struck piano strings and the tides of
the seas. The second category that we take up in this chapter, forced vibra-
tion, occurs when there is a persistent, repetitive input, such as the kind
an air conditioning system imparts to the building it cools or an engine
imparts to the vehicle it powers.

8.1 The Spring–Mass Oscillator–II:

Extensions and Analogies

In Section 7.3 we noted that the pendulum could be modeled as a spring-How?

mass oscillator, a model we now develop by applying once again the force
balance embodied in Newton’s second law. We show such a spring-mass
system in Figure 8.1. Newton’s law states that (see Section 7.3.1) the motion
of the oscillator’s mass, m, is governed by

net force = m
d2x(t )

dt 2
. (8.1)

Two forces are shown acting on the mass: a specified applied force, F(t ),Given?

and a force exerted by the spring. The spring is an ideal elastic spring that
has no mass and dissipates no energy. Its attachment points at each end

x = 0

Unstretched
spring

k

Mass
m

Force
F (t )

Displacement coordinate
x > 0

Figure 8.1 An elementary spring-mass system the shows an
ideal spring exerting a restoring force on a mass, m, as does a
specified applied force, F (t ). The spring’s stiffness is k , and the
displacement or movement of the mass to which the spring’s
right end is attached is x (t ).
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are called nodes. The left node of the spring in Figure 8.1 is attached to
a fixed point, say on a wall, while the right node is attached to a mass
whose movement, x(t ), is the system’s single degree of freedom. Moreover, Assume?

the spring always exerts a restoring force on the node or mass that returns
the spring to its original, unextended position. Thus, if moved a positive
distance to the right, x(t ), the spring pulls the node back to the left; if the
spring is compressed a distance to the left, −x(t ), it pushes the node back
to the right. The magnitude of the spring force is given by

Fspring = kx(t ). (8.2)

The net force on the mass is the difference between the applied and the
spring forces,

net force = F(t )− Fspring. (8.3)

so that the equation of motion is found by combining eqs. (8.1), (8.2),
and (8.3):

m
d2x(t )

dt 2
+ kx(t ) = F(t ). (8.4)

Equation (8.4) was already introduced as an analog of the pendulum in
Section 7.3, where we made the argument that the gravitational pull on
the pendulum mass exerted a spring-like force on the pendulum (see
Problem 8.1). For free, unforced vibration, there is no applied force, and
the governing equation is

m
d2x(t )

dt 2
+ kx(t ) = 0. (8.5)

If we introduce a scaling factor, ω0, to make the time dimensionless, as we
did in eq. (7.10), the oscillator equation (8.5) becomes

mω2
0

d2x(τ )

dτ 2
+ kx(τ ) = 0, (8.6)

which suggests that the scaling factor for the spring-mass system is

ω0 =
√

k

m
. (8.7)

Equation (8.7) can be confirmed to be dimensionally correct (see
Problem 8.2) and, as for the pendulum, ω0 can be identified as the cir-
cular frequency of the spring-mass oscillator. The circular frequency can be
related to the frequency and the period:

f0 = 1

T0
= ω0

2π
= 1

2π

√
k

m
. (8.8)
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Again, both f0 and ω0 have the physical dimensions of (time)−1, but the
units of f0 are number of cycles per unit time, while those of ω0 are radians
per unit time.

Equation (8.7) is actually far more important than its simple appear-Use?

Predict? ance suggests. It provides a fundamental paradigm for thinking about the
vibration of systems: The natural frequency of the oscillator is proportional
to the square root of the stiffness-to-mass ratio. Thus, natural frequencies
increase (and periods decrease) with increasing stiffness, k, while natural
frequencies decrease (and periods increase) with increasing mass, m. We
will refer back to this paradigm often, and we will also see that it captures
a very useful design objective.

We now extend the spring-mass model to incorporate non-ideal, dissipa-Why?

How? tive behavior. We do this by attaching to the mass a damping or dissipative
element, sometimes called a dashpot or damper, which exerts a restor-
ing force proportional to the speed at which the element is extended or
compressed:

Fdamper = cẋ(t ). (8.9)

The damper acts in parallel with the spring, as shown in Figure 8.2, so that
the net force exerted on the mass is

net force = F(t )− Fspring − Fdamper, (8.10)

and the corresponding equation of motion for a spring-mass-damper
system is

m
d2x(t )

dt 2
+ cẋ(t )+ kx(t ) = F(t ). (8.11)

x = 0

Spring

k

Mass
m

Force
F (t )

Displacement coordinate
x > 0

Damper

c

Figure 8.2 An elementary spring-mass-damper system that
shows the ideal spring (of stiffness, k ) exerting a force on a
mass, m, the specified applied force, F (t ), and a viscous
damping element that exerts a restoring force that is
proportional to the speed, ẋ (t ), at which the mass moves.
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This result is very similar to the corresponding result for the damped pen-
dulum, eq. (7.27), save for the facts that the present result includes a forcing
function, F(t ), and its spring term is (already) linear.

Problem 8.1. We experience the pull of gravity as constant and not
dependent on position. How does it come to be inter-
preted as exerting a spring force that is linearly propor-
tional to position? (Hint : Think about the equation of
motion in which the relevant term appears.)

Problem 8.2. Identify the fundamental physical dimensions of the
spring stiffness, k, and the mass, m, and use them to
determine the physical dimensions of ω0 for a spring-
mass oscillator.

8.1.1 Restoring and Dissipative Forces and Elements

Equation (8.11) offers the prospect of generalizing the energy ideas of
Sections 7.1.5 and 7.1.6 in rather broad terms. The spring-mass-damper
system is itself a paradigm for a very broad range of vibration models—
physical, biological, chemical, and so on. Thus, we will not only be able to
identify a system’s mass, but we will also be able to identify a spring-like
element with a stiffness, such as the gravitational pull of the pendulum,
and a dissipative element with a damping constant, much like the shock
absorber of an auto suspension (see Section 8.3). There is one salient
feature common to each of these elements that will be true no matter
what physical, biological, chemical or other model we are analyzing: Each
element either stores energy or dissipates energy. Two elements store energy
in the spring-mass-damper: the mass, which stores kinetic energy,

KE = 1

2
m(ẋ(t ))2, (8.12)

and the spring, which stores potential energy,

PE = 1

2
k(x(t ))2. (8.13)

In an ideal system, where there is no damping, the spring and the mass
exchange energy from potential to kinetic to potential, and so on inde-
finitely. Thus, the two storage elements exchange their forms of energy
repetitively as the ideal spring-mass system vibrates.



216 Chapter 8 Applying Vibration Models

The damping element dissipates energy according to (see eq. (7.29))

dE(t )

dt
= −1

2
c(ẋ(t ))2. (8.14)

As a spring-mass-damper vibrates or oscillates, energy is no longer simply
passed back and forth between the spring and the mass. Rather, the damp-
ing element draws energy out of the system and dissipates it as wasted power
or energy, typically through the heat transfer we associate with frictional
devices.

Again, these characterizations turn out to be useful for helping us analyze
systems or phenomena as we try to build models of their behavior.

8.1.2 Electric Circuits and the Electrical-Mechanical

Analogy

Electric circuits and their elements offer a parallel paradigm for analyzing
oscillatory behavior. Consider the elementary, parallel RLC circuit shown in
Figure 8.3. It has three ideal elements connected in parallel that are driven
by a current source that produces a current isource(t ). The three elements are
idealized in the same way that the mass of a spring-mass system is perfectly
rigid and that its spring is mass-less. The first element we introduce is the
ideal capacitor that, when discharged, transmits a voltage drop, V (t ), that
is proportional to the electric charge, q(t ), stored on two plates separated

RL C
i (t)

Current
source

Figure 8.3 A parallel RLC circuit that has a
current source as its driver. The elements are the
capacitor of capacitance, C , the inductor with
inductance, L, and the resistor with resistance, R .
The current source provides a current of
magnitude, isource(t ).
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by an insulator:

V (t ) = q(t )

C
. (8.15)

The constant, C , is the capacitance of the capacitor and its units are farads,
named after the British chemist and physicist Michael Faraday (1791–
1867). The capacitor stores energy in an amount proportional to the square
of the voltage across it:

EC = 1

2
C (V (t ))2 . (8.16)

Notwithstanding the elegant simplicity of eqs. (8.15) and (8.16), electrical
circuit models are generally cast in terms of the time rate of change of
charge, called the current, because it is hard to measure charge:

i(t ) = dq(t )

dt
. (8.17)

This form of the capacitor model is an element that carries a current, iC (t ),
that is directly proportional to the time rate of change of the voltage drop,
V (t ), across the capacitor:

iC = C
dV (t )

dt
. (8.18)

The second element we introduce is the inductor, which is a coil that
builds up a magnetic field rate when a current flows through it. The mag-
netic field causes a voltage drop across the inductor that is proportional to
the time rate of change of the current flowing through it:

diL
dt
= V (t )

L
. (8.19)

The constant, L, is the inductance, which is measured in henrys, named
after the American physicist Joseph Henry (1797–1878). Now we integrate
eq. (8.19) with respect to time,

iL = 1

L

t∫
−∞

V (t ′)dt ′, (8.20)

where t ′ is a dummy variable of integration in the integral in eq. (8.20).
The inductor stores energy in an amount proportional to the square of the
current flowing through it:

EL = 1

2
L(iL(t ))

2 = 1

2L


 t∫
−∞

V (t ′)dt ′



2

. (8.21)
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The third element is the resistor. It impedes (or resists) the flow of charge
in proportion to the time rate of change of charge, or the current. The
resulting voltage drop across the resistor is directly proportional to the
current flowing through it:

iR = V (t )

R
, (8.22)

where the constant, R, is the resistance, which is measured in ohms, named
after the German physicist Georg Simon Ohm (1787–1854). The resistor,
like its mechanical counterpart, the dashpot, dissipates energy by throwing
it off as waste heat or power. Thus, in the context of Section 8.1.1, we can
regard the resistor and the dashpot as similar dissipative elements, and the
capacitor (like the mass) and the inductor (like the spring) as elements that
store energy.

Can we draw an analogy between the electrical elements just introducedWhy?

and the spring-mass-damper system described earlier in this section? Yes.
In fact, there are two well-known electrical-mechanical analogies. The
choice of analogy is to some extent a matter of taste, and we describe here
the one we prefer; this book’s first edition presented the other.

We first invoke Gustav Robert Kirchhoff ’s (1824–1887) current law (KCL)How?

to derive the governing equations for the parallel RLC circuit in Figure 8.3.
The KCL states that the time rate of change of the electrical charge flowing
into or out of a node or connection in a circuit must be zero. In other
words, a node cannot accumulate charge. Expressed mathematically, the
KCL states that

dqnode(t )

dt
=

N∑
n=1

in(t ) = 0, (8.23)

where the in(t ) are the currents taken as positive flowing into the node
through the N elements connected at that node. Thus, looking at the indi-
cated currents going into and out of either of the two nodes in Figure 8.3,
we see that

N∑
n=1

in(t ) = isource(t )− iC − iL − iR = 0, (8.24)

where, again, isource(t ) is the current provided by the current source in
the circuit, and the remaining terms are the currents flowing through the
capacitor, the inductor, and the resistor, respectively. Note that eq. (8.24)
looks remarkably like a force balance equation [e.g., eqs. (8.3) and (8.10)]!
We now replace the currents in the elements by their respective constitutive
equations (8.18), (8.20), and (8.22), that describe how the current flows
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through each relates to the voltage across each. Then eq. (8.24) becomes:

C
dV (t )

dt
+ V (t )

R
+ 1

L

t∫
−∞

V (t ′)dt ′ = isource(t ). (8.25)

If we differentiate eq. (8.25) once with respect to time, we find:

C
d2V (t )

dt 2
+ 1

R

dV (t )

dt
+ 1

L
V (t ) = disource(t )

dt
. (8.26)

Equation (8.26) is a second-order, linear differential equation with constant
coefficients. Its dimensions can be shown to be consistent and correct
(see Problem 8.4). When solved, it yields the common voltage across the Use?

Predict?three parallel elements, from which both the currents through each and
the energy stored by the capacitor and inductor can be calculated [using
eqs. (8.18), (8.20), and (8.22)].

What is most noteworthy about eq. (8.26) is its uncanny resemblance
to eq. (8.11), the equilibrium equation for the spring-mass-damper. It is
most tempting to conclude that voltage is analogous to displacement, and
that

C ∼ m,
1

R
∼ c ,

1

L
∼ k. (8.27)

Some further expressions of this electrical-mechanical analogy are shown in
Table 8.1. The analogy is interesting and useful. Consider, for example, the
fact that we described the RLC circuit in Figure 8.3 as a parallel circuit. In
the spring-mass-damper of Figure 8.2, we specifically inserted the dashpot
as an element in parallel with the spring. The mass can also be said to be
in parallel with the spring and the dashpot since it shares their common
endpoint displacement. Further, the analogy extends into the context of
system characterization: A system can be said to be very stiff if k is large or
its inductance, L, is small, or as having a large effective mass or inertia if
either its mass, m, or its capacitance, C , is large.

Now, to complete this introduction to the electrical-mechanical ana-
logy, we repeat the thought that the choice of analogies is a matter of
taste. The analogy presented here allows us to draw distinctions between
behaviors that go through elements (force and current), and those meas-
ured across elements (displacement and voltage). The analogy also enables
us to identify Newton’s second law and Kirchhoff ’s current law as similar
expressions of balance (force or current) or conservation (momentum or
charge). The other analogy identifies force with voltage and displacement
with charge. It, therefore, does offer some more immediately recognizable
appeal because the resemblance of basic equations is even more obvious.
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Table 8.1 Elements of one electrical-mechanical analogy.

Mechanical Electrical

Momentum (∼ Speed): mv(t ) Charge: q(t )

Force (∼ d(Momentum)/dt ): Current(∼ d : (Charge)/dt ):

F = m dv(t )
dt

i(t ) = dq(t )
dt

Displacement: x(t ) Voltage: V (t )

Newton’s 2nd @Massless Node: Kirchhoff ’s Current Law:
N∑

n=1

Fn(t ) = d(mvnode(t ))

dt
= 0

dqnode(t )
dt

=
N∑

n=1

in(t ) = 0

Fspring = k

t∫
−∞

v(t ′)dt ′ = kx(t ) iL = 1
L

t∫
−∞

V (t ′)dt ′

Fdamper = cv(t ) = cẋ(t ) iR = 1
R V (t )

Fnet = mv̇(t ) = mẋ(t ) iC = CV̇ (t )

PE = 1
2 k (x(t ))2 EC = 1

2 C (V (t ))2

KE = 1
2 m (ẋ(t ))2 EL = 1

2 L (i(t ))2 = 1
2 L
(
q̇(t )

)2

However, the preferred analogy described above is more consistent with
physical principles and conforms better to our intuition of how such
systems behave.

Problem 8.3. Taking as fundamental the dimensions of current, I,
as charge per unit time and voltage (or electromo-
tive force), V, as (force × distance) per unit charge,
determine the fundamental physical dimensions of the
capacitance, C , the inductance, L and the resistance,
R.

Problem 8.4. Using the fundamental dimensions identified in
Problem 8.3, confirm that eq. (8.26) is dimensionally
consistent and correct.

Problem 8.5. Using the fundamental dimensions identified in
Problem 8.3, determine whether the energy expres-
sions for EC and EL given in Table 8.1 are dimensionally
correct.

Problem 8.6. Determine the governing equation for the free oscil-
lation of the voltage in a parallel LC circuit with ideal
elements.

Problem 8.7. Determine the natural frequency of free vibration
and the period of the ideal parallel LC circuit of
Problem 8.6.
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8.2 The Fundamental Period of a Tall,

Slender Building

It is not surprising that buildings, especially tall and slender buildings,
respond to several kinds of forces by vibrating. Buildings respond to
aerodynamic forces set in motion by wind or by aircraft passing nearby.
They also respond to ground-borne motion induced by traffic, earth-
quakes, or even explosions. These various inputs force not only the
vibration of the building as a whole, but also its internal components (such
as walls, floors, and windows). Further, most tall buildings have their own
internal sources of vibration; for example, air conditioning systems, escal-
ators, and elevators. What is most noteworthy is that tall buildings tend
to be built lighter and with more flexibility than were earlier tall build-
ings (see Figure 8.4). For example, the Empire State Building is a good bit
heavier and stiffer than the Sears Tower in Chicago (or were the towers of
the World Trade Center in New York). As a result, building vibration, both
local to a room and global to the building, has become a critical element
in building design: vibration can create problems of annoyance, dysfunc-
tion, and outright danger for a building’s occupants. The assessment of the

Wind
pressure

Displacement
of top of building

(exaggerated!)

(b)(a)

Figure 8.4 A small collection of skyscrapers, including the Eiffel
Tower, the John Hancock center, the Empire State Building and the
Sears Tower (after Billington, 1983). They are (mostly) tall and slender
buildings that grace the skylines of modern cities. Also shown is a
generic schematic of the greatly exaggerated movement of such a tall
building in response to wind loading.
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m

Reed or beam

Wind
resultant

H

Elastic beam
of modulus E,
second area
moment I, and
density �.

(a) (b)

Figure 8.5 Two simple models used to estimate
the fundamental period of vibration of tall, slender
buildings: (a) a simple spring-mass system that is
shown as a reed with a mass at its end; and (b) a
cantilever beam model wherein the stiffness and
the mass are distributed (uniformly) over the
building height, H , but from which a simple
spring-mass system can be deduced.

vibration response of a tall building, or any such structure, requires deep
understanding of the building’s dynamic properties, such as its own funda-
mental period or its natural frequency. It turns out, interestingly enough,
that a “first-order” estimate of the natural frequency or period of a tall
building can be obtained by making a lot of assumptions and modeling the
entire building as a simple spring-mass system.

Consider the generic skyscraper shown in Figure 8.4, together with pro-
files of some real counterparts. We assume that the wind pressure is uniformAssume?

over the building height and oriented normal to the side shown. The wind
pressure produces a net force that pushes on that building face, thus mak-
ing the building bend, with the largest movement at its free end at the top.
Since buildings are made up of elastic structural members, which are them-
selves springs, we expect that the building will resist the bending motion
caused by the wind and return to its original straight configuration when
the wind ceases. In this sense, we can draw the building as a whole as if
it were a simple elastic reed with a mass concentrated at its free end [see
Figure 8.5(a)], but where this reed-and-mass system is exactly the same
as the spring-mass system defined in Sections 7.3 and 8.1. We need only
determine the stiffness, k, and the mass, m.

One way to determine the stiffness of a building is to measure its
deflection while a load or force is being applied to the building and
then back-calculate the stiffness. (For a yet-to-be-built design, a similar
measurement could be made on a comparable building.) Consider, forGiven?
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example,a recently-built building with a square cross-section, B = 30 m
(98.4 ft), on a side, and of height, H = 300 m (984 ft). (For a working cal-
culation in standard American units, an experienced engineer would be
likely to use B= 100 ft and H = 1000 ft.) A very strong, gale-force wind,
say 100 mph (44.7 m/sec), produces a pressure of 1.23 kN/m2 (25.7 lb/ft2)
on the building, or a total wind force of

wind force =
{

1.23 kN/m2 × 30 m× 300 m
25.7 lb/ft2 × 98.4 ft × 984 ft

=
{

11.1× 106 N
2.49× 106 lb

(8.28)
We will assume that the resultant of this force acts halfway up the building. Assume?

Given?The building will bend or move when it is loaded. A practical estimate is
that the top of the building will move about 0.3% of its height, or 0.003H .
Further, the deflection or movement of the building varies nonlinearly with Assume?

height, so we will assume that the movement at that height is one-third
of the movement at its top. With the building top expected to move 0.9 m
(2.95 ft), we can calculate its stiffness as

k =
{

11.1× 106 N÷ 0.30 m
2.49× 106 lb÷ 0.98 ft

=
{

37.0× 106 N/m
2.54× 106 lb/ft

(8.29)

To determine the building’s fundamental period or natural frequency, we
need its mass. A practical estimate of the weight of a building uses an average Given?

specific weight of γ = 1.50 kN/m3 (9.54 lb/ft3) for a modern steel-framed
tower with a 12 ft story height. In this case, the mass of the building can be
calculated as:

m = γHB2

g
=
{ [1.50 kN/m3 × 300 m× (30 m)2] ÷ 9.80 m/(sec)2

[9.54 lb/ft3 × 984 ft × (98.4 ft)2] ÷ 32.2 ft/(sec)2

=
{

4.13× 107 kg
2.82× 106 lbm

(8.30)

Thus, the fundamental period of this hypothetical generic skyscraper is

T0 = 2π

√
m

k
= 2π

{ √
4.13× 107 kg ÷ 37.0× 106 N/m√
2.82× 106 lbm÷ 2.54× 106 lb/ft

∼=
{

6.64 sec
6.62 sec

∼= 6.6 sec . (8.31)

The result of eq. (8.31) is well within the range that experience suggests Verified?

for the period of a modern, steel-framed building,which is about 5–10 sec
for buildings whose height is within the range of 214–427 m (700–1400 ft).
Another estimate is that the period of a building is within the range of
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0.05–0.15 times the number of stories or floors. Since our hypothetical
building is likely to have something like 85 floors, our estimate of its period
is once again verified.

Another way to estimate the period or natural frequency of a buildingHow?

is to model it as a simple cantilever beam where the stiffness and mass are
distributed over the length of the beam [see Figure 8.5(b)]. The theory ofGiven?

strength of materials says that the stiffness of a cantilever beam of length,
H , measured at the top, is given by

kbeam = 3EI

H 3
, (8.32)

and that its period of vibration is given by

Tbeam
∼= 1.78H 2

√
γA

gEI
. (8.33)

Here γ is, again, the specific weight of the beam (or building), A is the
beam’s cross-sectional area, I its second moment of the cross-sectional area,
and E the modulus of elasticity of the material of which the beam is made.
Given that the dimensions of E are force per unit area and of I are (length)4,Given?

it is easily verified that eq. (8.33) is dimensionally correct (see Problems 8.8–
8.9). Note that the stiffness decreases with H 3, while the period increasesPredict?

Use? with H 2, which means that its natural frequency also drops as H 2. Thus,
a short building is stiffer than a tall building. In fact, the stiffnesses of two
buildings made of the same material and having the same floor plan are
related to each other as the cube of the inverse ratio of their heights.

It is also clear from eqs. (8.32) and (8.33) that the beam’s stiffness
increases with the product EI , and the period decreases with 1/

√
EI . What

do E , I , and their product EI mean for a beam and for a building? The mod-
ulus, E , represents the stiffness of the material of which the beam is made,
and, not surprisingly, Esteel> Econcrete> Ewood. So, in very loose terms, a
higher modulus is more suitable for taller buildings because of their higher
material stiffness. (There are other issues involved, for example, the specific
weight and the failure strength of materials, but that is well beyond our cur-
rent modeling scope.) The second moment of the area, I , also (erroneously)
called the moment of inertia, reflects the distribution of the cross-sectional
area about its own centerline. For a building of square cross-section, I ∼ B4

roughly speaking, so that both the second moment of a building and its
stiffness increase with its basic plan dimension to the fourth power, B4.

This very brief overview of building vibrations suggests why engineers
have had to worry only relatively recently about the effects of wind on tall
buildings. Certainly tall structures were built long ago; one can point to
the amazing cathedrals built during the Middle Ages (recall the discussion
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in Section 3.2.3), and even to the Eiffel Tower built in 1889. However, with
the advent of both high-strength steels developed in the 20th century and
new architectural styles, the flexible skyscraper came into being, bring-
ing along both interesting problems and equally interesting opportunities.
Thus, designing a building now means designing its dynamic properties
and vibration response for sources of dynamic loading, including wind,
earthquakes, nearby traffic, and mechanical systems within. Back-of-the-
envelope estimates such as we have made play an important role in these
designs because they enable engineers to make reasonable estimates of their
designs long before they have to specify those designs to costly, detailed
levels (see also Problems 8.41 and 8.42).

Problem 8.8. Given that the dimensions of the modulus of elasti-
city, E , are force per unit area, what are the dimen-
sions of the second moment, I , that make eq. (8.32)
dimensionally correct?

Problem 8.9. Using the dimensions identified in Problem 8.8, con-
firm that eq. (8.33) is dimensionally consistent and
correct.

Problem 8.10. What is the pressure produced by a 100 mph wind
expressed as a fraction of atmospheric pressure?

Problem 8.11. Show that the ordering of elastic moduli Esteel >

Econcrete > Ewood is correct in both metric and
standard American units. (Hint : Use the library!)

Problem 8.12. For a tall cantilever of specific weight, γ , what
are the physical dimensions of the parameter, c ≡√

E/(γ /g )? What could this parameter signify?
Problem 8.13. For the tall cantilever of Problem 8.12, with I ∼

B4, show that T0 ∼ (H/c)(H/B). Is this result
dimensionally meaningful?

8.3 The Cyclotron Frequency

To show that fundamental periods and frequencies are also important in Why?

other domains, we now present a simple model of the cyclotron, the device
that forces charged particles to move in a circular path when subjected to a
magnetic field. Electrons, protons, and ions are among the charged particles
spun in cyclotrons. We will determine the fundamental frequency of the How?

cyclotron by using some basic results from electromagnetism. A charged
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Figure 8.6 The cylindrical coordinate system and
the basic vector structure needed to portray the
elementary cyclotron. The coordinate system has
the radial, tangential, and vertical unit vectors er , eθ ,
and ez , respectively. The particle location is given
by r = |r|er . The magnetic field is directed in the −z
direction, that is, B = −|B|ez , and the magnetic force
exerted on the charged particle is Fm.

particle moving through a magnetic field is subjected to a magnetic force
(vector), Fm, given by:

Fm = qv × B, (8.34)

where B is the magnetic induction (vector) due to currents other than that
produced by the particle charge of magnitude q, v is the velocity (vector)
of the moving charged particle, and the symbol × denotes the vector or
cross product of the v and B vectors.

The geometry underlying our cyclotron model is shown in Figure 8.6.
The particle motion is described in a cylindrical set of coordinates having
radial, tangential, and vertical unit vectors er , eθ and ez , respectively. The
location of the particle is given by r = |r|er . The magnetic field is directed
in the –z direction, that is, B = −|B|ez . Thus, the vector equation (8.34)
can be written as

Fm = qv × (−|B|ez ), (8.35)

where will soon identify the angle between the v and B vectors as θ .
Equations (8.34) and (8.35) indicate that the magnetic force, Fm, is per-

pendicular to the particle velocity, v. Thus, the magnetic field, B, imparts no
power to the particle. Further, since both the force, Fm, and its consequent
particle acceleration are perpendicular to the velocity, v, the particle must
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be traveling in a circle of radius, |r|, at a (radian) frequency, ω0, that also
corresponds to simple harmonic motion. Further, that circular harmonic
motion also means that the velocity vector is simply v = |v|eθ = |r|ω0eθ
(see Problems 8.17–8.19). It then follows that eq. (8.35) becomes:

Fm = q(|v|eθ )× (−|B|ez ) = q(|r|ω0eθ )× (−|B|ez ) = −q|r|ω0|B|er .
(8.36)

Equation (8.36) shows that the force, Fm, is directed radially inward, so
that the acceleration is centripetal and also directed radially inward. Thus,
just as with the centripetal acceleration of the pendulum (see eqs. (7.7a) and
(7.8a)), the centripetal acceleration of the cyclotron particle is −|r|ω2

0er .
Then, with the net force being Fm of eq. (8.36), Newton’s second law in the
radial direction appears as

Fm = −q|r|ω0|B|er = −m|r|ω2
0er ,

which finally yields the cyclotron frequency,

ω0 = q

m
|B|. (8.37)

Equation (8.37) shows that the frequency depends only on the strength of
the magnetic field, B, and the charge-to-mass ratio, q/m, of the particle.
It is independent of the radius of the circle and, therefore, the tangential
velocity. Again, eq. (8.37) is the fundamental relationship behind cyclotron
design.

Problem 8.14. If the fundamental dimension of charge is Q, deter-
mine the dimensions of the magnetic field or mag-
netic flux density B that ensure that eq. (8.34) is
dimensionally correct.

Problem 8.15. The magnetic field B has units of webers per square
meter (Wb/m2) in SI units. Using eq. (8.34), express
these units in terms of units of charge (the coulomb,
C) and other fundamental dimensions in SI units.

Problem 8.16. Verify that the cyclotron frequency as given in
eq. (8.37) is dimensionally correct.

Problem 8.17. Calculate the velocity components of a point located
in a plane by the relation r = |r|ejω0t = x(t )ix +
y(t )iy . Express that velocity in terms of (a) the time
derivatives of x(t ) and y(t ) and then (b) in terms
of |r|ejω0t .

Problem 8.18. Why do the results of Problem 8.17 express simple
harmonic motion?
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Problem 8.19. Calculate the velocity components of a point loca-
ted in a plane by the relation r = |r|er and express
the results in plane polar coordinates. How does this
result compare with that found in Problem 8.17?

8.4 The Fundamental Frequency of an

Acoustic Resonator

What is an acoustic resonator? We have all blown air across the top of a
bottle and heard a deep, foghorn-like response. In fact, the frequency (or
pitch) that we hear is very much a function of the size of the air cavity
in the bottle (and not a function of the kind of liquid in the bottle!).
An acoustic resonator is a flask or bottle with an air cavity that is used
to produce sound. Such resonators are also called Helmholtz resonators
after the German physicist who investigated it, Herman von Helmholtz
(1821–1894). By what mechanism do acoustic resonators work?Why?

How? We will answer that equation by modeling the flask shown in Figure 8.7
and, in so doing, we will account for the mechanics and thermodynamics
of the changes in pressure and volume of a gas as it transmits a sound
signal. The flask has an “interior” cavity of volume V0, that contains a gas
of density ρ0, at ambient pressure, p0. The neck of the flask is of length L
and has a cross-sectional area A. We will see that the gas in the flask neckPredict?

moves like a mass and that the cavity exerts a spring-like response to that
movement, so that our resonator model will be a mass-spring system.

We take the mass of gas in the neck as our mass, m = ρ0AL, to developAssume?

this model (or this analogy). The stiffness in the system comes from the gas
in the cavity that resists being compressed as the neck mass moves toward
it. That resistance is transmitted at the interface between neck and cavity
by the pressure, p0. The pressure, p0, and the cavity volume of gas, V0, that
contains it are assumed to obey the adiabatic gas law :

pV γ = constant, (8.38)

where in this instance, γ is the ratio of heat capacities (γ = 1.4 for air,
for example), and p and V are, respectively, pressure and volume. When
the mass of gas in the neck, m, moves a distance, x , to the right, the cavity
volume must be reduced by

δV = −Ax . (8.39)
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A   Cross-sectional area

l   Length of neck

V0, �0, p0

Flask interior volume V0
with gas of density  �0
at ambient pressure p0

Figure 8.7 The flask used to
model the acoustic or Hemlholtz
resonator. The flask has a neck
of length L, with area A, that is
connected to an acoustic cavity
of volume, V0. The cavity
contains a gas of density ρ0, at
pressure, p0. When the mass in
the neck moves, the cavity
responds like a spring.

A small change of volume, δV , is related to a small change of pressure, δp,
by the gas law (eq. (8.38)),

δ(pV γ ) = V γ (δp)+ p(γV γ−1δV ) = 0,

which, after dividing through by pV γ , becomes

δp

p
+ γ δV

V
= 0. (8.40)

We now let the pressure and volume take on their ambient values, so
eq. (8.40) becomes

δp = −γ p0

V0
δV = 0. (8.41)

Finally, we substitute the volume change, δV , from eq. (8.39) to find that
the pressure change, δp is related to the distance moved by the neck mass, x ,
according to:

δp = γ p0
Ax

V0
. (8.42)
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Note that the dependence of δp on x is strongly suggestive of spring-like
action, but the dimensions certainly don’t look like those of a spring. On
the other hand, if we recognize that the cavity-produced restoring force,
Fcavity, acting on the neck mass is the product of pressure times area, then
we see that

Fcavity = δpA = γ p0A2

V0
x . (8.43)

Now the resemblance to the classic spring is more evident (see
Problem 8.20).

Then, if we blow across the open end of the flask with a force, F(t ), the
mass, m, is pushed down the neck a distance, x , toward the cavity, and
the cavity pushes back with a spring stiffness, kcavity, the acoustic resonator
behaves as a spring-mass system:

ρ0AL
d2x(t )

dt 2
+ γ p0A2

V0
x(t ) = F(t ). (8.44)

We can rewrite eq. (8.44) in terms of a parameter that is often used in
acoustics and vibration problems, the speed of sound of the gas in the
flask, c0. That speed is related to the specific heat capacity, ambient pressure,
and density of the gas:

c2
0 = γ

p0

ρ0
. (8.45)

Then the oscillator equation for the Helmholtz resonator is

ρ0AL
d2x(t )

dt 2
+ ρ0c2

0 A2

V0
x(t ) = F(t ). (8.46)

The natural frequency or fundamental period follows from the homo-
genous version of the equation of motion (8.46) for the acoustic resonator
(see Problem 8.22):

ω0 = 2π

T0
= c0

√
A

V0L
. (8.47)

Equation (8.47) could be accepted as the final result. It has the correctPredict?

Use? dimensions and shows that the frequency increases with the neck area
but decreases as the neck gets longer and the cavity volume gets larger,
which effects are consistent with our intuition (see Problems 8.23–8.26).
However, a bit of reflection suggests that eq. (8.47) can be further massagedImprove?

by identifying the volume of the neck (which is also the volume of the
moving mass m) as Vn = AL. Then the frequency and period become:

ω0 = 2π

T0
= c0

L

√
Vn

V0
. (8.48)
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This version of the natural frequency of the acoustic resonator is even more Verified?

interesting (and satisfying) because it shows the dependencies in a more
meaningful way. The frequency goes down if we elongate the neck because
it takes the mass longer to move down the neck, as we see from the ratio
c0/L. Further, the effect of increasing flask volume to get deeper (lower)
frequencies will not be seen unless that volume reduction is done with
respect to the neck volume.

Finally, the inhomogeneous version of the resonator model, eq. (8.46),
begins to set the stage for the rest of this chapter. What does happen when Why?

there is a forcing function F(t )? What does F(t ) look like? It is easy enough
How?

to imagine that the wind blowing across the top is an acoustic signal that
is, like most sounds, composed of many frequencies. Since eq. (8.46) is
linear, we could obtain a complete solution by solving it for each frequency
represented in F(t ) and then superposing or adding all of those solutions.
This suggests that we seek a generic solution to

d2x(t )

dt 2
+ ω2

0x(t ) = F0

ρ0Vneck
cosωt . (8.49)

The radian frequency, ω, in eq. (8.49) is arbitrary and can assume any
value, so the forcing function represents any oscillatory signal or input. As
we will see in Sections 8.6 and 8.7, there are some very interesting effects
that occur. But, first, we want to explore another way in which forcing
functions occur in models of vibration (Section 8.5), and then we will talk
about the mathematics (Section 8.6) and the physics (Section 8.7) that
occur in governing equations like eq. (8.49).

Problem 8.20. Show that the dimensions of γ (p0A2/V0) are such
that eq. (8.43) identifies the stiffness of the flask
cavity, kcavity.

Problem 8.21. How does the stiffness of a cavity change if the gas
is assumed to be governed by the ideal gas law,
pV = nRT ?

Problem 8.22. Show that the homogeneous solution of eq. (8.46)
requires that the resonator’s natural frequency must
be given by eq. (8.47). (Hint : Recall Section 7.2.2.)

Problem 8.23. Estimate the natural frequency of the cavity of a
standard (750 ml) wine bottle. How does that fre-
quency compare with the note middle C, for which
f = 262 Hz?
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Problem 8.24. How long would the wine bottle flask have to be to get
its cavity frequency below the lowest note produced
by a piano (∼ 55 Hz)?

Problem 8.25. How long would the wine bottle flask have to be to get
its cavity frequency above the highest note produced
by a piano (∼ 8360 Hz)?

Problem 8.26. Assume that a set of acoustic resonators is built like
wine bottles, each with neck radius rn , neck length Ln ,
cavity radius r0, and cavity length L0. How would the
ratio Ln/L0 vary with the radii if every bottle were to
have the same natural period?

8.5 Forcing Vibration: Modeling an

Automobile Suspension

We finished our discussion of the acoustic resonator by noting how itWhy?

could be forced to vibrate or respond, in that case with an excitation that
was external and obvious. However, excitation can show up in models in
other ways, as we now illustrate. Consider the damped oscillator shown inHow?

Figure 8.8(a) that is no longer connected to a fixed point or wall; rather,
its free end travels over a specified contour, y(z). It is a schematic for the
suspension systems we are accustomed to seeing in cars, for example, and
nowadays on high-end bikes. For the auto, the mass is that of the body, the
power train, and the passengers and cargo. The spring is typically a coil
spring that is wrapped around the shock absorber or damper. There was
a time when auto springs were leaf springs, but their suspension systems
would have been modeled the same way. The important feature is that
both leaf and coil springs share common connection points with the shock
absorber on the auto frame at one end and on the wheel at the other. Thus,
spring and damper are in parallel with the auto’s mass.

One way to set an auto suspension system in motion is to push rhyth-
mically on its fender, a fairly common qualitative test of whether the shock
absorbers retain much damping. This might be modeled in the same way
we proposed modeling blowing over an acoustic cavity by including a for-
cing function, F(t ). In addition, however, the suspension system is excited
or driven by the end connected to the wheel as it follows the road, y(z). The
model for the auto following the road contour is shown in Figure 8.8(b),
where a(t ) is the amount that the wheel-end of the suspension moves with
respect to a fixed wall. This means that the net extension of the spring is
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x = 0

Spring

F (t )

x (t) > 0

Dampera (t )

Spring

Mass
m

Shock absorber

Road contour

Mass
m

(a)

(b)

Figure 8.8 The spring-mass-damper system used to
model the behavior of a vehicle suspension system: (a)
the system’s three elements (m, k , c) act in parallel and
share the single coordinate, x (t ), while the other ends of
the spring and damper share the wheel as a common
connection point that follows the road contour, y (z ); and
(b) the revision of the model to show the road-following
wheel motion as a support that moves a distance, a(t ),
with respect to the “traditional” spring-mass-damper.

x(t ) − a(t ), and that the relative speed to which the damper responds is
d[x(t )−a(t )]/dt . The spring force is then k[x(t )−a(t )], and the damping
force is cd[x(t )− a(t )]/dt , so that Newton’s second law for this model is:

m
d2x(t )

dt 2
= F(t )− k[x(t )− a(t )] − c

d[x(t )− a(t )]
dt

,

or
mẍ + cẋ(t )+ kx(t ) = F(t )+ cȧ(t )+ ka(t ). (8.50)
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Equation (8.50) shows that the terms due to the wheel motion, a(t ), remain
on the right-hand side, because they are a known input. Thus, eq. (8.50)
represents an instance of forced vibration even absent an explicit forcing
function, that is, even when F(t ) = 0.

Consider the case of an auto without an explicit forcing function (i.e.,Given?

with F(t ) = 0) traveling in the z direction along a road whose contour
y(z) is given as:

y(z) = a0 sin αz , (8.51)

where α is a parameter with dimensions of (length)−1. If the auto moves
down the road at constant speed, v , it follows that z = vt , so that the wheel
motion is

a(t ) = y(z = vt ) = a0 sin αvt . (8.52)

Then the governing equation for the traveling suspension system is found
when eq. (8.52) is substituted into eq. (8.50):

m
d2x(t )

dt 2
+ cẋ(t )+ kx(t ) = a0(k sin αvt + cαv cosαvt ). (8.53)

Thus, for this model, we once again have a non-zero right-hand side or
forcing function made up of trigonometric terms. And, again, this resulted
not from an explicit external forcing function, but from the fact that the
system’s spring and damper were not attached to an immovable point.

Problem 8.27. What are the physical dimensions of the term αv in
eq. (8.53)? Explain whether or not those dimensions
are correct.

Problem 8.28. Determine the values of C1 andφ that allow the right-
hand side of eq. (8.53) to be written in the form
a0C1(cos(αvt − φ)).

Problem 8.29. Determine the values of C2 andφ that allow the right-
hand side of eq. (8.53) to be written in the form
a0C2(sin(αvt + φ)).

8.6 The Differential Equation

md 2x /dt 2 + kx = F (t )

How do we determine the solution to the inhomogeneous differential equa-How?

tion that describes the dynamic response of an ideal, undamped oscillator
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that is driven by a harmonic forcing function (see Problems 8.28 and 8.29
above):

m
d2x(t )

dt 2
+ kx(t ) = F0 cos(ωt − φ). (8.54)

The solutions to inhomogeneous differential equations have two parts that
are superposed. The first part is the transient solution to the homogeneous
equation that we had already found as eq. (7.48) or (7.49) in Section 7.2.2.
The second part is the particular or steady-state solution that is crafted to
solve only the differential equation without regard to the system’s initial
conditions.

As a trial particular solution let us assume that

x(t ) = X0 cos(ωt − φ), (8.55)

where X0 is a constant yet to be determined. By direct substitution of
eq. (8.55) into eq. (8.54), we get:

(k −mω2)X0 cos(ωt − φ) = F0 cos(ωt − φ),
which means that

X0 = F0

k −mω2
= F0/k

1− (ω/ω0)2
, (8.56)

where once again ω0 is the natural frequency of the ideal oscillator defined
in eq. (8.7). The final form of the steady-state solution is, then,

x(t ) = F0/k

1− (ω/ω0)2
cos(ωt − φ). (8.57)

This all seems perfectly straightforward but for one detail: If the fre-
quency of the driving force, ω, happens to equal the natural resonance of
the system, ω0, the solution (8.57) “blows up” or becomes infinite. Now in
the real world that may not literally happen because of damping, but even
with the ameliorating effect of damping there is a problem when ω = ω0.
In the next section we will identify that as resonance, but here we want to
stay focused on the formal mathematics. To complete that we note simply
that a formal solution to eq. (8.54) does exist for the case ω = ω0, and that
solution can be shown to be (see Problem 8.31):

x(t ) = F0

2mω0
t sin(ω0t − φ). (8.58)

Note that x(t ) depends linearly on t in eq. (8.58), a result that clearly
confirms the singular behavior of the ideal spring-mass system when it is
excited or driven at its natural frequency. In the real world, again, damping
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comes very much into play, and avoiding such resonant behavior (even
with damping) is a major priority in the design of vibrating systems. We
will have more to say about that in Section 8.7.

Problem 8.30. Determine the value of X0 in eq. (8.55) by substitut-
ing eq. (8.55) into eq. (8.54) and ensuring that the
equation of motion is indeed satisfied.

Problem 8.31. Confirm that the solution (8.58) does satisfy
eq. (8.54) for the special case of resonance, that is,
when ω = ω0.

Problem 8.32. Determine and explain the dimensions of the coeffi-
cients (F0/mω0) in eq. (8.58).

8.7 Resonance and Impedance in Forced

Vibration

We now turn to the meaning and physical implications of the mathematics
of simple forced oscillators. So, we again start with the equation of motion
of an ideal spring-mass system that is driven by a harmonic excitation:

m
d2x(t )

dt 2
+ kx(t ) = F0 cos(ωt − φ). (8.59)

The complete solution to eq. (8.59) is the sum of the homogeneous or
transient solution (7.48) and the particular or steady-state solution (8.57):

x(t ) = B1 cosω0t + B2 sinω0t + F0/k

1− (ω/ω0)2
cos(ωt − φ). (8.60)

where B1 and B2 are arbitrary constants that will be determined by the
initial conditions set for the system. Having written the complete solution,
it must be said that our primary interest lies in the steady-state solution
because it predicts the behavior of the spring-mass system for as long as
we drive it with the harmonically varying force in eq. (8.59). Further, it is
independent of the initial conditions, which, as we noted in Section 7.22,
affect only the transient behavior. (It should be noted that the notion of
a transient solution that, implicitly, does not affect the steady state, does
assume that there is at least a little bit of damping, so that solutions initiated
only by the initial conditions will die out. The steady-state solution persists
even in the face of damping because the excitation persists.)
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Since we can always incorporate the effects of the initial conditions by
suitably adjusting the two arbitrary constants in the complete solution
(8.60), we take eq. (8.60) in the following form as the solution of interest:

x(t ) = F0

m(ω2
0 − ω2)

cos(ωt − φ). (8.61)

We note that x(t ) has the same temporal behavior as the forcing function,
that is, its behavior in time is the same. Thus, we say that the motion of the
mass is in phase with the action of the driver. On the other hand, the speed
of the response is given by

dx(t )

dt
= − ωF0

m(ω2
0 − ω2)

sin(ωt − φ), (8.62)

which shows that the speed is out of phase with the driver by 90◦, that is,
the speed of the mass lags behind the force by a time equal to t = π/2ω.
Now eq. (8.62) can also be written as (see Problem 8.35):

dx(t )

dt
= F0

mω0[(ω/ω0)− (ω0/ω)] sin(ωt − φ), (8.63)

As we just saw in Section 8.6, the displacement and the speed become infi-
nitely large as the forcing frequency, ω, approaches the natural frequency,
ω0. Thus, when the driving frequency equals the natural frequency, we
have the condition of resonance. The oscillatory forcing function produces
an infinite response. In fact, resonance is what we are trying to achieve
when we time the pushes given to someone seated on a playground swing!
In Figure 8.9 we have sketched the shape of the ideal response curve of
eqs. (8.61) or (8.57) on a set of axes rendered dimensionless: kx(t )/F0

against ω/ω0. The infinite peak for the ideal case is quite obvious. We have
also shown there a sketch of the damped response, which we will discuss
shortly, but note that it is bounded and finite.

In acoustics and vibration research and practice, resonance and other
vibratory phenomena are exhibited and measured in terms of a system’s
impedance, which for the system modeled here is:

Z (ω) ≡ |F(t )|
/∣∣∣∣dx(t )

dt

∣∣∣∣,
which means that the impedance for an ideal spring-mass system is

Z (ω) = mω0

(
ω0

ω
− ω

ω0

)
. (8.64)
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Figure 8.9 A sketch of the shape of the ideal response
curve of a spring-mass system driven by a harmonic
excitation. The axes are dimensionless: kx (t )/F0
against ω/ω0. The infinite peak for the ideal case is quite
obvious. The damped response is bounded and finite.

We see in eq. (8.64) that the impedance vanishes at resonance, that is,
Z (ω0) = 0. Thus, when the speed of the mass becomes infinite, nothing
impedes its motion—even if the magnitude of the force is very small. Thus,
an alternate statement of the condition of resonance is that it occurs at the
frequency for which the impedance Z (ω) = 0 vanishes.

The form of eq. (8.65) also suggests that the behavior of Z (ω) might be
substantially different for ω < ω0 than it would be for ω > ω0. In fact, for
frequencies below the natural frequency (i.e., for ω � ω0), eq. (8.64) can
be approximated as

Zk(ω)
∼= mω2

0

ω
= k

ω
. (8.65)

Thus, for low frequencies, where the excitation is applied slowly, the oscil-
lator responds as a spring: The impedance decreases as the frequency
increases toward the natural frequency. For low frequencies, of course,
we are closer to the static limit of ω = 0, so it should not be a surprise that
stiffness dominates the response.

On the other hand, for frequencies above the natural frequency (i.e., for
ω � ω0), eq. (8.64) can be approximated as

Zm(ω) ∼= −mω. (8.66)

At high frequencies we expect the dynamics to be more important, and so
it is not unexpected that the mass dominates. It is also not surprising that
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the impedance increases with frequency, meaning that it gets progressively
harder to push around a mass at ever-higher frequencies.

So much for the ideal case. What happens in the “real world” where there
is friction and damping and energy loss? The mathematics of modeling
damped systems get more complex (see Problems 8.37 and 8.38), so we
will present a few key results here. The governing equation for analyzing
the dynamic response of a damped oscillator is:

m
d2x(t )

dt 2
+ c

dx(t )

dt
+ kx(t ) = F0ejωt . (8.67)

A damping element is included here, and we also have introduced complex
arithmetic in the notation for the excitation: The forcing function is written
in exponential form (see Sections 4.9 and 7.2.2) and, in order that eq. (8.67)
remain real, the forcing amplitude must be a complex number. It can
be shown that the square of the magnitude of the resulting motion of a
spring-mass-damper is:

|x(t )|2 = |F0|2
m2(ω2

0 − ω2)2 + c2ω2
, (8.68)

while the magnitude of the impedance is:

|Z (ω)|2 = m2ω2
0

(
ω0

ω
− ω

ω0

)2

+ c2. (8.69)

We note immediately that eqs. (8.68) and (8.69) reduce to their respect-
ive counterparts for the ideal model (eqs. (8.61) and (8.64)) when c = 0.
Further, and still more important, note that the presence of damping elim-
inates both the singular response and the vanishing of the impedance at
resonance. Thus, at resonance, when ω = ω0,

|x(t )|2ω0
= |F0|2

c2ω2
0

, (8.70)

and

|Z (ω0)|2 = c2. (8.71)

Equation (8.70) shows that the response is bounded and non-infinite as
long as there is damping, and that it becomes infinite when c = 0. Equation
(8.71) shows that the impedance vanishes altogether only if the damping
vanishes altogether. In fact, eqs. (8.69) and (8.71) both also confirm our
intuitive sense that damping impedes motion.
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Problem 8.33. What are the fundamental physical dimensions of
impedance for a mechanical oscillator?

Problem 8.34. Show that the mechanical impedance of an ideal
spring-mass system can be written in the form

Z (ω) = k

ω
−mω.

Explain why this form of impedance does not work
as well as eq. (8.64) to discern the stiffness- and mass-
controlled regions of response.

Problem 8.35. Write the governing equation for a parallel LC
circuit subject to a harmonic current input
−(i0/ω) cos(ωt − φ) and determine the resulting
impedance.

Problem 8.36. What are the fundamental physical dimensions of
impedance for an electrical oscillator? [Hints: Ima-
gine eq. (8.71) and its predecessor with a resistor,
R, in place of the damping coefficient, or solve
Problem 8.35.]

Problem 8.37. Assume an exponential solution to the homogeneous
counterpart of eq. (8.67) and determine the roots for
which a solution exist.

Problem 8.38. Determine the particular solution to eq. (8.67) by
assuming that x(t ) = B exp(jωt ), where B andωmay
be complex.

Problem 8.39. Determine and explain the dimensions of the coeffi-
cients, (F0/mω0), in eq. (8.58).

Problem 8.40. Sketch the impedance, Z (ω), of a spring-mass-
damper against the dimensionless frequency and
identify the regimes where stiffness, mass, or damp-
ing controls the response.

8.8 Summary

We have devoted this chapter to the simple harmonic oscillator, without
and with damping, without and with a forcing function, and in several
different guises. These applications have included the classical mechanical
spring-mass system, inductor-capacitor oscillators, a parallel RLC circuit,
the vibration of tall buildings, and oscillation in a cyclotron and of a vehicle
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suspension system. We also developed the electrical-mechanical analogy
and pointed out its usefulness for thinking about the meaning of the
different terms in the various oscillator models.

In addition, we solved the differential equation and described the solu-
tion for the forced harmonic vibration of an oscillator. In so doing, we
were able to bring out the very important concepts of resonance and
impedance. In discussing impedance, we showed how the various elements
(spring, mass, and damper) provided different response regimes, that is,
frequency regimes that are controlled, respectively, by stiffness, mass, and
damping.

And, finally, we pointed out the commonality of both the mathemat-
ics and the physics of such system models. Thus, to develop oscillatory
behavior, systems must have elements with stiffness that store poten-
tial energy (springs and capacitors) elements with mass that store kinetic
energy (masses and inductors), and elements that dissipate energy (dash-
pots and resistors). Stiffness may take many forms, but there must always be
an element that stores potential energy in order for there to be an exchange
with an element that stores kinetic energy.
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8.10 Problems

8.41. The height of a World Trade Center (WTC) tower was 1370 ft (110
stories) and its fundamental period was about 11 sec. The height of
the Empire State Building is 1250 ft (102 stories) and its fundamental
period is about 8 sec.

(a) How do their respective average specific weights compare?



8.10 Problems 243

(b) If the average specific weight for the WTC is as given in
Section 8.2 for slender steel-framed towers, what would be the
corresponding number for the Empire State Building?

8.42. The height of the Citicorp Building is 915 ft (59 stories) and its
fundamental period is about 6.5 sec. Given the data in Problem 8.41
for a WTC tower, find:

(a) how the period varies with building height; and
(b) how the period varies with number of stories.

8.43. Obtain an expression [analogous to eq. (7.28)] for the total energy
in a parallel RLC circuit and calculate its rate of change with respect
to time [analogous to eq. (7.29)].

8.44. Obtain an approximate expression [analogous to eq. (7.30)] for the
total energy in a parallel RLC circuit that can be used with the
results of Problem 8.43 to obtain a differential equation [analogous
to eq. (7.29)] for the circuit’s energy.

8.45. Use the results of Problem 8.44 to determine how the energy of the
parallel RLC circuit behaves over time? What is the relevant time
constant, and how would you characterize that constant? (Hint :
Reread Section 7.1.6.)

8.46. (a) Find the impedance of an acoustic resonator as a function of
ρ0, A, L, V0 and ω; and

(b) What are the physical dimensions of the resonator impedance?

8.47. Charged particles are accelerated in a cyclotron travel in circles of
radius r that depends on their speed, v , and magnetic flux density,
B, according to:

r = mv

qB
,

where m and q are the particle’s mass and charge, respectively.
The speed and the energy are boosted every half-cycle, so that the
particles execute forced harmonic motion in circles whose radii are
increasing .

(a) At what resonant frequency ω0 must the energy be supplied?
(b) What is the impedance of this system?
(c) Show that the rate of change of the energy in the system is of

the form
dE(t )

dt
= (qB)3(r2

2 − r2
1 )

2πm2
> 0.

8.48. A simple seismograph is shown in the accompanying figure. If y
denotes the displacement of m relative to the earth, and η the
displacement of the earth’s surface relative to the fixed stars, the
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equation of motion of the mass is

m
d2y(t )

dt 2
+ c

dy(t )

dt
+ ky(t ) = −m

d2η(t )

dt 2
.

(a) Determine the steady-state response if η(t ) = C cosωt .
(b) Sketch the amplitude of y(t ) as a function of ω.

m

Earth

k

8.49. What are the dimensions of the damping quality factor, Q = ω0m/c?
8.50. A long-period seismometer has mass, m = 0.01 kg, period, T0 =

30 sec, and damping quality factor, Q = 3. An earthquake triggers
the earth’s surface to respond with a oscillations with a period of
15 minutes and a maximum acceleration of 2× 10−9 m/sec2. What
is the amplitude of the seismometer vibration?

8.51. Given that power equals force times velocity or speed, deter-
mine the average power needed to maintain the oscillations of
a damped system driven by F = F0 cosωt and responding as
x(t ) = X0 cos(ωt + φ), where φ is the phase angle by which the
response lags behind the force.

8.52. For the forced oscillator of Problem 8.51, let the phase angle φ =
π/2 rad, ω0 = 500 rad/sec, Q = 4 when

X0 = F0

k

ω0/ω√(
ω0

ω
− ω

ω0

)2

+
(

1

Q

)2
,

with sin φ = Q(kX0/F0)(ω/ω0).

(a) Plot the average power input found in Problem 8.51 against the
frequency, ω, of the driving force.
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(b) Find the width�ω of the power curve of part (a) at one-half of
the maximum power, centered around the resonance frequency.
This range of frequencies, the half-power band, is that within
which resonance effectively occurs.

8.53. (a) Repeat the calculations of Problem 8.52 with a damping quality
factor Q = 6.

(b) What does a comparison of the two half-power bands for
different values of Q reveal about the effect of damping on
resonance?

8.54. List resonant systems that we see in nature, over as wide a range as
possible.

8.55. A weight hanging on the end of a spring causes a static deflection
xst = W /k. If the static deflection is measured in inches, show that
the resonant frequency in cycles per second is f = 3.13/

√
xst (Hz).

8.56. A bridge is 100 m long and supported by steel beams whose
modulus of elasticity is E = 2 N/m2 and whose second moment
I = 0.002 m4. Determine the bridge’s natural frequency if its mass
is 105 kg and a weight of 1.8× 105 N causes it to deflect 0.01 m?

8.57. A group of 200 soldiers who collectively weigh 1.8× 105 N marches
in step across the bridge of Problem 8.56. Their right feet hit the
bridge at regular intervals of 0.9 sec, forcing the bridge to vibrate.
Would an observer see that vibration? Explain how you know that.


