
4
Approximating and Validating

Models

We devote this last chapter on fundamentals to discussions of elementary
mathematical approximation techniques and of model testing and valida-
tion. Approximations are used to simplify both models (as we will see
in Chapter 7 where the nonlinear model of the pendulum is simplified to
obtain a linear estimate of the pendulum’s behavior) and the numerical cal-
culations made with the models. Such approximations and their numerical
implementations introduce error, but the magnitudes of these errors can
be estimated and limited. We will also discuss means of model validation:
checking dimensions and units, testing qualitative behavior and limits, and
applying basic statistics.

4.1 Taylor’s Formula

Engineering and scientific calculations abound with mathematical approx-
imations, in some measure because linear problems are easier to solve, but
in larger measure because many of our linear models are validated and justi-
fied by experiment and by experience. Distinctions such as those between a
linearized model and its full nonlinear counterpart also involve mathema-
tical approximations such as those described in this section. How do we
approximate a function to properly estimate the behavior it describes?
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72 Chapter 4 Approximating and Validating Models

Many analytical approximations are derived from Taylor’s formulas.
Advanced numerical techniques such as the finite element method also use
Taylor’s formulas to approximate functions as polynomials with unknown
coefficients that are determined numerically. Thus, we now review some
basic results about Taylor’s formula and series, including Taylor formulas
of trigonometric functions and binomial expansions.

4.1.1 Taylor’s Formula and Series

Any function that is continuous and has derivatives can, in general, be
expanded into and approximated by a Taylor’s formula. For values of the
independent variable, x , in a region near x = a, a function f (x) can be
approximated by the polynomial

f (x) ∼= f (a)+ f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+· · ·+ f (n)(a)

n! (x−a)n .

(4.1)
where f ′(a) represents the first derivative of f (x), f ′′(a) the second deriva-
tive, and f (n)(a) the nth derivative of f (x) evaluated at the point x = a. The
series given in eq. (4.1) is called the Taylor formula of f(x) in the neighborhood
of the point x = a. The point x = a must be such that all derivatives of f (x)
exist there and are finite. In addition, and most important for this discus-
sion, if the difference (x−a) is very small, then we need only a few terms of
the series (4.1) to render a good approximation of f (x) in the neighborhood
of x = a. The corresponding Taylor’s series that renders the approximate
equality in eq. (4.1) an exact equality is the limit of eq. (4.1) as n→∞:

f (x) = lim
n→∞

[
f (a)+ f ′(a)(x − a)+ f ′′(a)

2! (x − a)2 + · · ·

+ f (n)(a)

n! (x − a)n
]

. (4.2)

If we want to approximate the function f (x) at another point, say x = b,
we evaluate eq. (4.1) at that point to find Taylor’s formula for f (b):

f (b) ∼= f (a)+f ′(a)(b−a)+ f ′′(a)
2! (b−a)2+ · · · + f (n)(a)

n! (b−a)n . (4.3)

If we use only the first term of eq. (4.3), we are approximating f (b) as being
equal to f (a), as shown in Figure 4.1(a). If we use the first two terms of
eq. (4.3), our approximation is improved by incorporating the effect of the
slope change f ′(a), as shown in Figure 4.1(b). This value is closer to the
true value than our simple one-term approximation. Our approximation
is still further improved when three terms of the expansion (4.3) are used
to approximate f (b), as shown in Figure 4.1(c).
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Figure 4.1 Improving the approximations obtained with a Taylor
expansion by retaining more terms: (a) a one-term series
approximation; (b) a two-term estimate; and (c) a three-term
approximation. Note that the higher-order approximations depend on
derivatives of f (x ) at the reference point of the Taylor series, x = a.
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The accuracy of an approximation for any function f (x) improves with
the number of terms used in the expansion. Similarly, the approximation
in eq. (4.1) can be turned into an exact formula like eq. (4.2) by adding a
remainder term Rn+1 to eq. (4.1):

f (x) = f (a)+f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+· · ·+ f (n)(a)

n! (x−a)n+Rn+1,

(4.4)
where the remainder term (which can be cast in several forms) is here
shown as:

Rn+1(x) = f (n+1)(ξ)

(n + 1)! (x − a)n+1 . (4.5)

The derivative in eq. (4.5) is calculated at a “suitably chosen” point ξ some-
where in the interval between a and x . Even though the precise location of
ξ is not known, the remainder formula can be used to estimate the error
made if a Taylor formula to order n is applied (see Problem 4.31). How
many terms do we have to keep in a Taylor formula to ensure that the error
is negligible, or at least acceptable? As we will see below, it depends on what
we’re trying to do, on the specifics of the model we’re trying to build.

4.1.2 Taylor Series of Trigonometric and

Hyperbolic Functions

The Taylor series expansions of the trigonometric functions for a = 0 are:

sin x = x − x3

3! +
x5

5! −
x7

7! + · · · , (4.6a)

cos x = 1− x2

2! +
x4

4! −
x6

6! + · · · . (4.6b)

where x is expressed in (dimensionless) radians to ensure dimensional
homogeneity. The corresponding Taylor expansions for the hyperbolic
functions are:

sinh x = x + x3

3! +
x5

5! +
x7

7! + · · · , (4.7a)

cosh x = 1+ x2

2! +
x4

4! +
x6

6! + · · · . (4.7b)

We will now use a Taylor formula for the hyperbolic cosine (eq. (4.7b))
to estimate the sag of a tightly stretched string or cable that is weighted
down only by its own weight. Such a cable is called a catenary after the
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Figure 4.2 A long measurement tape stretched between
two fixed points, A and B , for which the sag, h, is
exaggerated. The mathematical model of the stretched tape
is a hyperbolic cosine that can be approximated to varying
degrees, depending on the relative magnitude of the ratio,
h/l . This dependence signifies the fact that actual tape
readings, t , must be corrected to properly measure the
distance, l , on the ground.

Latin word for chain. Estimating the sag of a catenary may not sound
all that interesting, but it does have a practical side that had been, until
recently, a real engineering application. Until theodolites were introduced
to measure large distances in construction projects, surveyors and engineers
relied on tape measures. A surveyor’s tape acts as a catenary because its
only vertical load while measuring is its self-weight. We show such a tape
in Figure 4.2, stretched between two supports at the same elevation that
are separated by the length, l , with the cable’s sag, h, exaggerated. Since
cosh (0) = 1, the equation of the catenary is

y(x) = c
(

cosh
x

c
− 1

)
, (4.8)

where c is the catenary parameter and the coordinates of the vertex or low
point of the cable are (x = 0, y = c). The catenary parameter is a function
of T0, the (constant) horizontal component of the tension in the stretched
cable, and of γ , the string’s weight per unit length (see Problem 4.4). We
see from Figure 4.2 that the sag is given by

h = y(l/2) = c

(
cosh

l

2c
− 1

)
. (4.9)
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Now we substitute the Taylor series (4.7b) of the hyperbolic cosine to
find the sag:

h = c cosh
l

2c
− c = c

(
1+ 1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6
+ · · · − 1

)

= c

(
1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6
+ · · ·

)
. (4.10)

Note that this Taylor series for the sag has the correct physical dimensions
since both c and h are measures of length and the ratio l/c is dimensionless,
as it should be as the argument of the hyperbolic function. Further, for a
tightly stretched string, the sag, h, is very small compared to the length, l ,
that is, h/l 
 1. This suggests that the ratio l/2c is also quite small
compared to 1 because a one-term approximation of eq. (4.9) is found by
retaining only the first term in the last of eq. (4.10):

h ∼= c

(
1

2!
l2

4c2

)
= l2

8c
. (4.11)

Equation (4.11) confirms the suggestion that large values of the dimen-
sionless catenary parameter, 2c/l , correspond to small values of the
dimensionless sag, h/l , because this result can be arranged as:

2c

l
= l

4h
� 1. (4.12)

Further, had we approximated the hyperbolic cosine for small values of
l/2c independently of eqs. (4.9) and (4.10), we would have calculated that

c cosh
l

2c
∼= c

(
1+ 1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6

)
∼= c , (4.13)

and we would then have found, quite mistakenly, that the sag was identically
zero because we had used an inadequate approximation!

How do these results affect the measurements of long distances with a
tape? The answer is found by calculating the length of tape, t , needed to
measure the horizontal distance, l , as shown in Figure 4.2. An element of
arc length along the tape, ds, is given by

ds =
√
(dx)2 + (dy)2 = dx

√
1+ (y ′(x))2. (4.14)

If we substitute the catenary shape (4.8) into eq. (4.14) and apply a standard
identity, we find that

ds = cosh
x

c
dx . (4.15)
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Equation (4.15) can be straightforwardly integrated, that is,∫ t/2

0
ds =

∫ l/2

0
cosh

x

c
dx ,

to yield (see Section 4.8):

t = 2c sinh
l

2c
. (4.16)

We can expand eq. (4.16) in a Taylor formula, again based on the assump-
tion that l/2c is quite small, but for reasons that will soon become evident,
we will retain the first two terms in the series, that is:

t ∼= 2c

(
l

2c
+ 1

3!
l3

8c3

)
. (4.17)

With the aid of either eq. (4.11) or eq. (4.12), eq. (4.17) can be written as
a quadratic equation in the distance l :

l2 − lt + 8

3
h2 = 0. (4.18)

The quadratic equation (4.18) can be solved for its roots:

2l = t


1±

√
1− 32

3

(
h

t

)2

 . (4.19)

Only the positive root is physically viable here. In the next section, we will
see that the radicand in eq. (4.19) is an ideal candidate to be written as a
binomial expansion, which is a special form of Taylor’s formula. For small
values of h/l and to two term accuracy,

2l ∼= t

(
1+

(
1− 32

6

(
h

t

)2
))
= t

(
2− 32

6

(
h

t

)2
)

. (4.20)

Thus, the actual length, l , that is measured by a tape reading of t is given by

l ∼= t

(
1− 8

3

(
h

t

)2
)

. (4.21)

Obviously, the larger the sag, h, the larger the correction that must be
applied to the tape reading, t , to ensure an accurate measurement of the
distance, l .

Lastly on the expansion (4.10), we point out that it is an approximation
in the spirit of the small angle approximation that appears frequently in
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engineering and scientific models. For example, from eq. (4.6b) we know
that the second-order Taylor formula for the elementary cosine can be
written as

cos x ∼= 1− x2

2! , (4.22)

where x is measured in radians. To approximate the cosine function for
very small angles in the neighborhood of x = 0, we can safely ignore
the second-order term in eq. (4.22) and take cos x ∼= 1. However, as we
will see in the formal development of the pendulum model in Chapter 7,
we often have reason to approximate a slightly different function, (1 −
cos x). If we neglected or ignored the second-order term here, the resulting
approximation would be (1− cos x) ∼= 0, which is a bad approximation
that results from throwing out the dependence on x . Thus, as in so many
other aspects of modeling, it is important to know where we’re going when
truncating Taylor formulas or series.

There is another approach to approximating trigonometric functions
that is worth mentioning. Suppose we wanted to replace sin x by x in a
model or a calculation. We could look at the numerical values of both
functions to see where the substitution would be acceptable. For example,
if we are willing to accept an error of 5%, we could replace sin x by x for
x ≤ π/6. For an error of only 2%, the substitution would be acceptable for
x ≤ π/12. (And while it is important that all angles in these arguments be
either rendered as dimensionless ratios of variables or expressed as angles
measured in radians, it is worth noting that the two examples just given
correspond to small angles of, respectively, 30◦ and 15◦.) Thus, by exploring
the numerical ranges of interest and the associated errors, we can often
justify replacing a trigonometric function by an algebraic approximation.

4.1.3 Binomial Expansions

Another Taylor series that is used often in engineering and science is the
binomial expansion:

(a + x)n = an + nan−1x + n(n − 1)

2! an−2x2

+ n(n − 1)(n − 2)

3! an−3x3 + · · · . (4.23)

Equation (4.23) is valid for all values of n, and it converges for x2 < a2.
Further, when n is a positive integer, the series (4.23) has only a finite
number of terms.

Equation (4.23) is very useful in applications when x is rendered
dimensionless with respect to a. (Recall that the principle of dimensional
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homogeneity requires that x and a have the same physical dimensions.) If
we divide eq. (4.23) by an , we find that(

1+ x

a

)n = 1+n
(x

a

)
+ n(n − 1)

2!
(x

a

)2+ n(n − 1)(n − 2)

3!
(x

a

)3+· · · .

(4.24)
This is an ideal form for extracting expansions valid for values of
(x/a)
 1.

We will illustrate the use of binomial expansions by looking at a familiar
mechanics problem, the estimation of the weight of a mass, m, that is
held at some height, h, above the surface of the earth. The weight, W , is
the gravitational force, Fg , as expressed by Newton’s law of gravitational
attraction, which can be expressed in scalar form as:

Fg = −Gmem

R2
= −W , (4.25)

where G is the universal gravitational constant, me the mass of the earth,
and R is the distance between the centers of m and me . The minus sign
in front of W follows because of the sign convention implied in eq. (4.25)
wherein the gravitational force, Fg , would be positive directed away from
the earth, while we would customarily draw W as a positive quantity (an
arrow) directed toward the earth. Now, if we measure the distance to the
mass, m, from the earth’s surface as z , it follows that

R = Re + z , (4.26)

where Re is the average radius of the earth. If we substitute eq. (4.26) into
eq. (4.25), we find that the weight can now be written as:

W = Gmem

(Re + z)2
= Gmem

R2
e

(
1+ z

Re

)−2

. (4.27)

The collection of terms involving the earth’s properties and the uni-
versal gravitational constant are normally expressed in the gravitational
constant, g :

g ≡ Gme

R2
e

, (4.28)

so that the weight at height z above the earth’s surface is expressed in
the form

W = mg

(
1+ z

Re

)−2

. (4.29)

Equation (4.29) looks strange at first glance. We are accustomed to
W = mg , so the presence of the dependence on z is unfamiliar. On the
other hand, the function of z looks very much like the binomial expansion
(4.24). We can assume that z 
 Re , but what does that mean? If we ignore



80 Chapter 4 Approximating and Validating Models

the dependence on z altogether, then we obtain a very familiar result, that
is, W ∼= mg . If we expand eq. (4.29) in the manner of eq. (4.24) and keep
only the first two terms in that expansion, we find that

W ∼= mg

(
1− 2z

Re

)
. (4.30)

This clearly indicates a dependence of weight on height that we do not
ordinarily experience. On the other hand, it at least raises the questions,
“When does the dependence on height become a significant factor on
weight?” and “When does a mass become truly weightless?”. The first ques-
tion can be answered by some straightforward calculations (see Problems
4.9 and 4.10), while the second deserves a bit of discussion. For a body to be
weightless, the truncated binomial expansion (4.30) suggests that it would
have to be weighed at an altitude z = Re/2. This altitude is sufficiently
large that it violates the assumption made in this binomial expansion, that
is, z 
 Re . If we look at the exact result (4.29), we see that the body only
becomes truly weightless when z →∞, which is a very different result!

In fact, when the altitude or distance becomes so large that z � Re , we
would rewrite eq. (4.29) in the form

W = mg

(
Re

z

)2 (
1+ Re

z

)−2

. (4.31)

Equation (4.31) can be expanded and truncated as:

W ∼= mg

(
Re

z

)2 (
1− 2Re

z

)
∼= mg

(
Re

z

)2

. (4.32)

The expansion (4.32) clearly indicates that, within a strictly Newtonian
world, a body becomes truly weightless only at heights or distances from
the earth’s surface that are infinitely larger than the radius of the earth.
No doubt there are distances for which the weight is significantly less and
for which there are practical applications. But, for our purposes, the main
point is that the same function can be expanded into different binomial
expansions, depending on what information we are seeking. Also, in either
instance, we are defining large and small as always, with respect to another
dimension or distance. That is, we never say, “z is small” or “z is large.”
Instead we say that z 
 Re or that z � Re , or, in words, “z is small
compared to Re” or “z is large compared to Re .”

Problem 4.1. Show that eq. (4.7) can be obtained by substituting ix
for x in eq. (4.6).

Problem 4.2. Determine the first four terms of the Taylor expan-
sions of tan x and cot x about x = 0.
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Problem 4.3. Determine the first four terms of the Taylor expan-
sions of tanh x and coth x about x = 0.

Problem 4.4. Use dimensional analysis to determine how the caten-
ary parameter, c , is related to the constant horizontal
component of the cable tension, T0, and its weight
per unit length (or unit weight), γ .

Problem 4.5. How much tape sag is permissible to measure a 50 m
distance accurately to within 5% ? Within 2% ?

Problem 4.6. What does a body that weighs 10 N at the earth’s sur-
face weigh at a height of 10 m? At the peak of Mt.
Everest? (Hint : You might have to look up some facts
about our planet!)

Problem 4.7. According to eq. (4.30), at what altitude would the
weight of 10 N at the earth’s surface drop to 9 N?
To 5 N?

Problem 4.8. Compare the results obtained in Problem 4.7 with
more exact results obtained by using eq. (4.29).

Problem 4.9. What does a body that weighs 10 N at the earth’s sur-
face weigh on the surface of the moon? On the surface
of the planet Pluto? On the surface of the planet Mars?
(Hint : You might have to look up some facts about
our planet’s environment!)

Problem 4.10. If the gravitational potential corresponding to
Newton’s law of gravitation (eq. (4.25)) is given by

Vg = −Gmem

R
,

find the exact expression that defines this potential as
a function of altitude, z , from the earth’s surface.

Problem 4.11. Write a binomial expansion of the results of
Problem 4.10 to determine the potential energy above
the earth’s surface to the first order in z .

Problem 4.12. Fill in the missing elements of the following table to
two-term order.

Function Approximation

sin x
cos x
1− sin x
1− cos x
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Problem 4.13. Fill in the missing elements of the following table to
two-term order.

Function Approximation

sinh x
cosh x
1− sinh x
1− cosh x

4.2 Algebraic Approximations

As we have seen in Section 4.1, we often drop terms that are of higher order
in Taylor series expansions because they will not affect the final answer
very much, that is, neglecting those terms does not introduce unaccept-
able error. We will now look very briefly at some elementary equations of
thermal expansion so we can illustrate how we might more generally drop
analytical terms to simplify calculations.

When we heat a solid body, the average distance between that solid’s
atoms increases. Consequently, the linear dimensions of that body—that
is, its length, width, or its height—also increase. Thus, assuming that any
of the solid’s three dimensions is originally of length, L0, upon heating that
produces a temperature difference, �T , that dimension increases to the
length L0 +�L, where the change in length,�L, is given by:

�L = αL0�T . (4.33)

Equation (4.33) tells us that the change in length of a linear dimension is
directly proportional to the temperature increase, and that the constant of
proportionality is the coefficient of thermal expansion, α. We can rewrite
eq. (4.33) as an expression for the heated length of the dimension, L:

L = L0(1+ α�T ). (4.34)

Suppose the solid we are considering is a sheet of material originally of
length L0 and width W0. After heating, these two dimensions would each
expand according to eq. (4.34) and the plate’s original area A0= L0W0

would expand to the area A:

A = L0(1+ α�T )W0(1+ α�T ) = A0(1+ α�T )2

= A0
[
1+ 2α�T + (α�T )2

]
. (4.35)
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Table 4.1 Coefficients of thermal
expansion, α, for several
common materials.

Material α[(◦C)−1, per ◦C]

Aluminum 24× 10−6

Brass 20× 10−6

Copper 14× 10−6

Glass 4− 9× 10−6

Steel 12× 10−6

Zinc 26× 10−6

The question then arises: Do we need to keep (and use) all three terms in
eq. (4.35) to calculate the area change due to heating or cooling?

The answer to the foregoing question depends in part on the coefficient
of thermal expansion, α, which is typically a very small number, as can be
seen in Table 4.1. Thus, it is tempting to say that because α is small we can
neglect the quadratic term in eq. (4.35). And while this may, in fact, be
practically alright, in principle it would be wrong, for two reasons. First, if
the temperature difference�T is large enough, the productα�T might not
be negligible. Second, we have cautioned that comparisons should always
be made to some reference, so we normally say that it is some dimensional
ratio that is small, as we did for l/2c for the catenary. This means that we
are making a straightforward numerical estimate. For the present case, the
comparable—and proper—statement is that the product α�T is small, so
that we can approximate eq. (4.35) as:

A ∼= A0(1+ 2α�T ). (4.36)

From this truncation we can define a surface coefficient of expansion,

γ ∼= 2α, (4.37)

where γ is thus derived from our approximating (1 + α�T )2 by
(1+ 2α�T ).

Problem 4.14. Develop a volume coefficient of expansion, β, for a
solid of length L0, width W0, and height H0, that
parallels the surface coefficient, γ , of eq. (4.37).

Problem 4.15. To what temperature difference would an aluminum
solid have to be subjected for the surface coefficient of
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expansion to produce errors of 1% in the area change
compared to the exact area change?

Problem 4.16. To what temperature difference would an aluminum
solid have to be subjected for the volume coefficient of
expansion to produce errors of 1% in the area change
compared to the exact area change?

4.3 Numerical Approximations: Significant

Figures

We now shift our attention to approximations that we make both in meas-
urements and in calculations, that is, we turn to the subject of significant
figures. All measurements and virtually all calculations involve approxima-
tions or truncations and, therefore, they involve error. When measuring
things we try to minimize these errors by being very careful about what
we read and record. Although analog displays have been almost completely
displaced by digital displays, it is worth revisiting the “good old days” to
emphasize an important point about what we regard as significant.

In Figure 4.3 we show an old-fashioned analog display with a graduated
scale that goes from 0 to 50 V. The needle points to a number between 12
and 14, and since there are no lines or gradations between 12 and 14, we
have to estimate where the needle points within that 2 V interval. Since the
needle appears to be about 20% of the distance between these numbers,
we estimate that the added voltage measured is 0.20× (14− 12) ∼= 0.40 V,
so that the correct reading is 12.4 V. We would characterize this reading as
“good to three significant figures” because two digits are read directly from
the graduated scale, and the third digit is estimated.

It is important to recognize that the number of significant figures is
not determined by the placement of the decimal point. Had the voltage
scale been from 0 to 5 V on the meter in Figure 4.3, we would have
recorded a voltage of 1.24 V good to the same three significant figures
because we would have directly read 1.2 V plus 20% of the distance between
1.2 and 1.4 V.

We show some examples of how numbers are written in Table 4.2,
together with assessments of the number of significant figures of each.
The confusion arises because of the presence of terminal zeros. In general,
we don’t know whether those zeroes are intended to signify something, or
whether they are placeholders to fill out some arbitrary number of digits.

It is equally important to recognize that a very similar situation is con-
fronted when doing calculations. Much of the data that engineers and
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Figure 4.3 An old fashioned analog meter,
the standard face before the advent of the
digital display. We still see them in many
automobile instrument panels, and there are
some people who still wear analog
watches—but these are uses in which
accuracy beyond the gradations is seldom
critical. When measuring in the lab and
interpreting the results, however, it becomes
quite important to know just how many
significant figures should be recorded.

Table 4.2 Examples of the ways numbers are typically written and
assessments of the number of significant figures that can be assumed
or inferred. Confusion arises because of the unstated meaning of the
terminal zeroes.

Measurement Assessment Significant Figures

9415 Clear Four
9400 Possibly Confusing Two (94× 102) or three

(940× 101) or four (9400)
52.0 Clear Three
63.2 Clear Three

6.32 Clear Three
0.00632 Clear Three
6.32× 105 Clear Three
0.041 Clear Two
0.0410 Possibly Confusing Two (0.41) or three (0.0410)
0.00008 Clear One
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scientists use is given only to a limited number of significant figures,
sometimes as few as one. For example, there is a much-used material
parameter called the modulus of elasticity. Denoted by E , this modulus
is 30 × 106 lbf/in2 in British units, implying that at most only two fig-
ures (i.e., 30) are significant. It is possible to infer that there is only one
significant figure here, but in that case we should write E = 3×107 lbf/in2.

Much of the confusion could be mitigated or even eliminated if all tech-
nical calculations and experimental data were written in scientific notation,
wherein numbers are written as products of another number and a power
of 10, and where the “new” number is normally between 1 and 10. Thus,
numbers both large and small can be written in one of two equivalent, yet
unambiguous forms:

256,000,000 = 2.56× 108 = 0.256× 109,

0.000075 = 7.5× 10−5 = 0.75× 10−4.

In scientific notation, the number of significant figures is equal to the num-
ber of digits counted starting from the first nonzero digit on the left to
either (a) the last nonzero digit on the right if there is no decimal point,
or (b) the last digit (zero or nonzero) on the right when there is a decimal
point. This notation or convention assumes that terminal zeroes without
decimal points to the right signify only the magnitude or power of ten.

We should always remember that we cannot generate more significant
digits or numbers than the smallest number of significant digits in any of our
starting data. In other words, the results of any calculation or measurement
are only as accurate as the least accurate starting value. We illustrate this
with three examples of multiplication and division showing that the num-
ber of significant figures in the result is equal to the smallest number of
significant figures in any of the calculation’s components:

21.982× 3.72 = 81.77304→ 81.8,

101.572× 0.0031 = 0.3147337→ 0.31,

789.30÷ 0.05 = 15,786→ 2× 104.

It is far too easy to become captivated by all of the digits that pop up in
the displays of our electronic calculators or in computer printouts, but it is
really important to remember that any calculation is only as accurate as the
least accurate value we started with.

In addition and subtraction, the same principle applies. Thus, here we
compare the positions of the last significant figure of each number relative
to its decimal point because the one that is furthest to the left defines the
position of the last allowable significant figure of the sum or difference
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being calculated. For example,

53.24
+3.333
+2.4
58.9

489.3213
−5.487

483.834

Another important issue when dealing with numbers is that of round off,
that is, when should we round off numbers, or should we round them off
at all? We generally round off numbers at the end of a calculation because
dropping insignificant numbers earlier increases uncertainty. The standard
convention for rounding off uses the number 5 as its benchmark: Numbers
less than 5 following the last retained significant digits are dropped, while
numbers greater than 5 cause us to add 1 to the last significant digit retained.
If the digit to be rounded or dropped is itself a five, we make the preceding
digit even (i.e., even digits are left so, while odd digits are “rounded up” to
the next even digit). Thus, for example,

5.017→ 5.02,

5.015→ 5.02,

5.014→ 5.01,

5.025→ 5.02.

These results also indicate the degree of uncertainty in the true value of a
number that has been rounded off. From the data just given and the rules
behind it, we see that the number 5.02 could mean a number that is actually
between 5.015 and 5.025.

Finally, it is worth noting that there are numbers that have unlimited
significant figures. Some are whole numbers representing an exact count,
and thus contain an unlimited number of significant figures. They are
usually written without any digits after the decimal point, or they may not
have a decimal point at all. To indicate such a number, we might write “35.”
or, as in the formula for the circumference of a circle, C = 2πr , wherein
the number “2” represents an exact count and is written without a decimal
point. The number π is itself a number that has an infinite number of
significant figures, as does e, the base of Naperian logarithms. However,
we write “35.0” or “2.0” when we want to indicate that we are measuring
something to the first decimal place.

Whether reporting measurement data or doing calculations, we should
always keep in mind the significance of our initial data so that we can assess
the validity of our results.
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Problem 4.17. Round off each of the following numbers to two (2)
significant figures:
(a) 5.237 (b) 0.82549 (c) 81.356 (d) π
(e) 6.2305 (f ) 0.0428 (g) 10.45 (h) 4.035

Problem 4.18. Round off each of the following numbers to three (3)
significant figures:
(a) 5.237 (b) 0.82549 (c) 81.356 (d) π
(e) 6.2305 (f ) 0.0428 (g) 10.45 (h) 4.035

Problem 4.19. Complete the following multiplications and express
the results to the correct number of significant figures:

(a) (6.28× 103)× 2.712 (b) 43.32× 0.3
(c) 928× 4.23

Problem 4.20. Do 99.9 and 100.1 have the same number of signific-
ant figures? Explain your answer.

Problem 4.21. Estimate the ranges within which each of the follow-
ing numbers lie:
(a) 7.7 (b) 7.70 (c) 1200 (d) 1.200× 10−3

4.4 Validating the Model–I: How Do We

Know the Model Is OK?

There are two issues that arise when we speak of the validity or correct-
ness of a model. The more obvious one is whether or not the model can
predict the measured or observed behavior of whatever object or device
is being modeled. Thus, if we are modeling the period of the oscillations
of a pendulum, as we started to do in Chapter 2, we could reasonably
expect that changes in the pendulum length would produce oscillations at
correspondingly different periods or frequencies. As we see from eq. (2.2),
if we double the length l of a pendulum, we would expect its period to
increase by about 41% . Similarly, were we doing pendulum experiments
on the moon, we would expect to see an increase in the period of about
145%. These predictions of the pendulum’s behavior are confirmed by the
available experimental data, and so the model is validated. Alternatively,
given empirical data without an underlying theory, we could construct a
model to explain the empirical data—although it is also quite likely that
the (new) model or theory would be further tested by making predictions
about experiments as yet undone or measurements as yet untaken.

(We note parenthetically that the measurement [and containment] of
experimental error is a complex subject that is closely linked to the field or
discipline in which the experiment is intellectually housed. However, there
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are some fundamental ideas about error and about statistics that apply
generally, and we will introduce them in Sections 4.5–4.8.)

The less obvious question about model validity is concerned with the
inherent consistency and validity of the model. If we hark back to the mod-
eling meta-principles outlined in Section 1.2, we see issues and questions
that pertain directly to model validation. For example, have we identified
the right governing principles? Have we used the right equations? And,
is the model consistent with its principles and assumptions? The first two
of these questions are about ensuring that we apply the proper principles
and formulations when we try to find what we are seeking. Again, when
modeling the pendulum, our basic principles are Newton’s law of motion,
and our assumptions will depend on whether we are anticipating small
angles of oscillation or large. As we will see in Chapter 7, a linear equa-
tion of motion suffices in the former case, while a complete nonlinear
formulation is needed for the latter (large oscillations).

4.4.1 Checking Dimensions and Units

There are several checks or tests we can bring into play while we build
models and approximate the mathematics. The first is the application of the
principle of dimensional homogeneity (cf. Section 2.2), which requires that
each term in an equation has the same net dimensions. For example, the
stiffness or spring constant of a cantilever beam, k, can be written in terms of
the beam’s length, L, second moment of its cross-sectional area (commonly
but erroneously called the “moment of inertia”), I , and modulus, E , as:

k = 3EI

L3
. (4.38)

The physical dimensions of the parameters in eq. (4.38) are F/L for the
spring constant, L for the beam length, L4 for I , and F/L2 for the modulus.
Thus, we can apply the principle of dimensional homogeneity to ensure
that eq. (4.38) has the correct dimensions and is dimensionally consistent:

[k] = (F/L) =
[

3EI

L3

]
= 1× (F/L2)× L4

L3
= (F/L). (4.39)

If the dimensions of all the terms in an equation or model are not known,
as is sometimes the case, then the principle of dimensional homogeneity
can be applied to properly determine the dimensions of the unknown
quantity. In the case of the cantilever beam, if we didn’t know the dimen-
sions of I , we would solve eq. (4.38) for I and then apply the principle of
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dimensional homogeneity again:

[I ] =
[

kL3

3E

]
= (F/L)L3

F/L2 = L4. (4.40)

We can also take the principle of dimensional homogeneity one step
further and use it as a guiding principle for checking the specific units used
in a numerical calculation. If we measured the properties of a particular
cantilever beam, say a standard (12 in) steel ruler to be used in a classroom
project, we would find

E = 2.05× 102 GPa,

I = 6.78× 10−5 cm4, (4.41)

L = 2.81× 10−1 m.

If we substitute these values into eq. (4.38), we see immediately that we
have a mismatch of units:

k = 3(2.05× 102 GPa)(6.78× 10−5 cm4)

(2.81× 10−1 m)3
. (4.42)

The units’ mismatch is easily rectified if we use proper unit conversions,
that is,

k =
3

[
2.05× 102 × 109 Pa

(
N/m2

Pa

)][
6.78× 10−5 cm4

(
m

102cm

)4
]

(2.81× 10−1 m)3
,

(4.43)
or

k = 3
[
2.05× 1011 N/m2

] [
6.78× 10−13 m4

]
(2.81× 10−1 m)3

= 1.88× 101 N/m.

(4.44)

Two final notes here. First, it is generally a better strategy to write all of the
data to be used in the same system of units at the beginning of a calculation
as this reduces the chance for error. Thus, here we could have converted the
units immediately after the measurements were taken. Second, note that
we have used scientific notation in both writing the measurements and
performing the arithmetic. Thus, there can be no doubt about the number
of significant figures in the answer (4.44).



4.4 Validating the Model–I: How Do We Know the Model Is OK? 91

4.4.2 Checking Qualitative and Limit Behavior

Model validation is integral to the modeling process. Models are validated
by having their predictions confirmed experimentally, or statistically, or
by some other quantitative means. In both our physical and mathematical
reasoning we must make explicit our assumptions and their limits, and we
must ensure that our mathematics does indeed reflect the physics we are
modeling. In addition to looking at numbers, the mathematical behavior
should “feel right” in qualitative terms. We did just such qualitative analysis
at the beginning of this section when we described the expected behavior
of the pendulum as a function of its length, l . Similarly, as also indicated
by eq. (2.2), it feels intuitively right that pendulums will swing faster and
have shorter periods in stronger gravitational fields. Thus, when we are
constructing mathematical models, and especially when we are making
mathematical approximations, we need to take care that we are admitting
mathematical behaviors that are qualitatively appropriate.

Still another example of such reasoning is available from our just-
completed dimensional check of the stiffness of a beam. Here we rewrite
eq. (4.38) in a form that explicitly identifies the physical meaning of each
parameter that appears in the equation:

(k = beam stiffness) ∝ (E = material stiffness)(I = cross− sectional 2nd moment)

(L = beam length)3
.

(4.45)

Equation (4.45) can be viewed through the eyes of a structural engin-
eer talking about the meaning of its mathematical version, eq. (4.38).
It supports the engineer’s intuitions as follows. It stands to reason that
the beam’s stiffness is proportional to the material stiffness, that is, it
increases or decreases as does E . The beam’s stiffness is also proportional
to the second moment of the beam’s cross-section, I . It also is intuitively
pleasing that the stiffness is inversely dependent on the length, so that
the beam’s stiffness increases as L becomes very small and decreases as L
becomes very large. Finally, if we look at the limiting cases of each para-
meter decreasing to zero or becoming indefinitely large, we would see that
each of the trends exhibited by eq. (4.45) is consistent with the reasoning
just outlined, as well as with our practical experience of beams in the real
world.

Reasoning about the way that variables appear in equations is of second
nature in mathematical modeling, and we will have many opportunities to
invoke such reasoning in the discussions of applications that follow. One
simple example is afforded by the fundamental frequency of free vibration
of a cantilever beam, ω, of mass density, ρ, and cross-sectional area, A,
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with a mass, m, at its tip. That frequency is, approximately,

ω ∼=
√

3EI/L3

ρAL(1+m/ρAL)
. (4.46)

Does eq. (4.46) exhibit the right qualitative and limit behavior? It does. It
reduces to a well-known result for a cantilever beam when the tip mass, m,
vanishes, and eq. (4.46) correctly describes the frequency of a mass-less
beam with a tip at its end when that tip mass gets so large that it dominates
the beam mass.

It may seem that much of what has been said in this section is common
sense. It is, as long as it is commonly applied! To invert a popular saying,
“If we expect our model to be a duck, then it should look like a duck, walk
like a duck, and quack like a duck.”

Problem 4.22. By what percentage would the period of a pendulum
change if its length was halved? If it was reduced by
one-third? If the length was reduced to one-third of
its original length?

Problem 4.23. Explain why the pendulum period increases by 145%
on the moon.

Problem 4.24. How would the period of a pendulum change, com-
pared to its value on earth, if the pendulum was on
Mars? On Pluto?

Problem 4.25. How would the period of a pendulum change as
a function of its height, h, above the surface of
the earth? (Hint : The variation of the gravitational
acceleration g can be represented as a function of h
from Newton’s law of gravitational attraction.)

4.5 Validating the Model–II: How Large Are

the Errors?

Building mathematical models means using numbers derived from experi-
mental or empirical data, or from analytical or computer-based calcula-
tions. Errors are thus always present, whether due to data reading or data
manipulation. Since error is always present, we turn now to a discussion of
error and statistics—the way we deal with error.
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4.5.1 Error

Error is defined as the difference between a measured (or calculated) value
and its true or exact value. Error is always present. How much error
is present depends on how skillfully the data is read or manipulated.
Therefore, error analysis should be a part of every modeling process.

There are two types of error. Systematic error occurs whenever an
observed or calculated value deviates from the true value in a consistent
way. Systematic error occurs in experiments when instruments are improp-
erly calibrated because their output varies during use. Thus, instruments
must be properly calibrated before an experiment is run and before data
is measured and recorded. Improper calibration affects both analog and
digital data recorders, although analog displays are also subject to other
kinds of systematic error, such as a bent needle on a meter face such as that
shown in Figure 4.3. Systematic error also affects calculations, although
this is more controllable as it is likely due to using incorrect values of
“known” variables or to improper control of the number of significant
figures retained during the calculation process.

Random errors are, not surprisingly, due to chance. They arise largely in
experimental work because unpredictable things happen and because not
everything in an experimental set-up is known with complete certainty:
Connections can be loose or break altogether, dirt may get into a sensit-
ive moving part, or the amount of friction present in a moving part may
not be controllable. The resulting random error varies in both magnitude
and sign. The laws of statistics help us to describe and account for the
distribution of such random errors. Indeed, it has been said that random-
ness is a mathematical model for variability that cannot be explained in a
deterministic way.

The absolute error is defined as the difference between the true or expec-
ted value, Xe , and the measured value, Xm , that is, as Xe − Xm . The true
value, Xe , may be known or it may have an expected value based on a cal-
culation or some other data source. The relative error is the absolute error
divided by the measured value, that is, (Xe − Xm)/Xm .

The statistic found most useful is the percentage error, which is the
percentage-based relative error:

% error = (100)
(Xe − Xm)

Xm
. (4.47)

For example, suppose that an ammeter has a systematic error of +2 A
(amperes) because of either a bent needle (analog) or improper calibration
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(digital or analog). When the display reads 100 A the percentage error is

% error = (100)
(102− 100)

100
= 2%,

while if the same ammeter reads 20 A the percentage error is

% error = (100)
(22− 20)

20
= 10%.

The percentage error is much larger in this instance, providing another
example of how scale affects results!

Similarly, errors are introduced when series expansions are truncated
(cf. Section 4.1.2). For example, for θ = π/12(15◦), the percentage error
incurred by replacing sin x with x is:

% error = (100)
(sinπ/12− π/12)

π/12
= −1.14%.

Note that errors and mistakes are not the same thing. Errors are defined
as the difference between a true or expected value and a measured (or
calculated) value. Further, as we discussed above, some error is unavoid-
able. On the other hand, mistakes are blunders made by the person doing
the experiment (or analysis or calculation). Blunders are made by read-
ing or recording erroneous data, using instruments inappropriately (e.g.,
improperly calibrated instruments, inadequately sensitive meters), using
the wrong formulas, using inconsistent or wrong units, and so on. These
kinds of mistakes can—and obviously should—be avoided.

4.5.2 Accuracy and Precision

Since we have to contend with systematic and random errors, as well as
with the hopefully rare mistake, it is important that we be able to estimate
the effects of these errors and mistakes.

Accuracy is defined as a representation of how close a measured or cal-
culated value is to an established or true value. In experimental work,
accuracy is usually expressed as a percentage of the maximum scale value.
Thus, voltages read on a 100 V scale with an accuracy of 5% are accurate
to within±5 V.

Precision is defined in terms of the ability to reproduce a set of data with
a specified accuracy. The more precise a set of readings or calculations,
the closer the individual readings or calculations are to each other. Thus,
suppose we measured an input voltage that is known to be 50 V with the
voltmeter having an accuracy of 5%. Five individual readings are taken
and recorded as, respectively, 54, 53, 55, 53, and 55 V. These clearly fall
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Indicates an accuracy of ± 5 V 

Known value

Average measured
value

Indicates a precision
of ± 1 V

45
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Figure 4.4 Some (made-up) experimental data
that illustrates: accuracy, the closeness of the
measured value to an established value, and
precision, the ability to reproduce a set of
measurements within a specified accuracy. These
data reflect measurements that are rather precise,
yet relatively inaccurate.

within the meter’s accuracy bounds of ±5 V. Since the average or mean
reading of the five readings is 54 V, and since the maximum deviation from
this mean of any one of the measurements is 1 V, the precision of the five
measurements is determined to be ±1% (remember that the meter has a
100 V scale). As we illustrate in Figure 4.4, our little virtual experiment has
produced precise but relatively inaccurate readings.

It is worth noting that the accuracy of a measuring device is controlled
by its sensitivity because it is the sensitivity that identifies the minimum
amount of change that the device can detect and indicate. Suppose we
wanted to measure very small voltages, say less than 1 millivolt (mV). Our
trusty voltmeter allows us to choose one of three measurement ranges:
0–50 V, 0–2.5 V, or 0–5 mV. With either of the first two ranges we will see
no reading at all. However, with the third scale, 0–5 mV, there will be a
noticeable measurement that can be recorded. Thus, moving from either
of the first two scales to the third produces a more sensitive voltmeter, and
so our readings will be more accurate. Hence, we see how scale influences
sensitivity and, therefore, accuracy.

Problem 4.26. Draw two circular archery targets and use them to
depict the “hit” patterns of (a) an archer who is accur-
ate, but not precise; and (b) an archer who is precise,
but not accurate.
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4.6 Fitting Curves to Data

Graphical presentations of calculations and experimental results are the
most convenient—and often the most informative—presentation of data
available. We can spot trends, identify discontinuities, and generally get an
intuitive “feel” for what the data “says” when we look at plots or curves.
Given this very human proclivity, how do we draw curves for a given collec-
tion of points? That is, since plotted data points rarely align themselves per-
fectly on a known or identifiable curve, how do we fit a curve through them?
Still further, how do we generate the “best fit” of a curve through the data?

The short answer to these questions is in a familiar spirit: It depends
on what you want. If the accuracy of the curve is not too important, and
if we’re only looking for a rough, qualitative idea of how one variable
depends on another, then we can draw the curve “by eye.” That is, we draw
a smooth curve that seems to go through the plotted data points with an
eye to perhaps “distributing” the data in roughly equal amounts above and
below the curve drawn, as we have done in Figure 4.5.

Often, greater accuracy is desirable, as when we want to interpolate to
obtain values between measured values, or even more so when we want
to extrapolate to estimate values beyond the range of the measured values.
Extrapolation can easily magnify errors in the estimated values, so that
greater accuracy is quite important. Further, extrapolation is most accurate
when the curve drawn is a straight line.

The method of least squares is the most commonly used approach to
obtaining a best straight line through a series of points. It assumes that
all of the scatter, the variation of the data from the drawn curve, derives

x

y
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108642

Figure 4.5 A best-fit curve that is drawn by hand
using visual estimation (i.e., “drawn by eye”).



4.6 Fitting Curves to Data 97

from error in measuring one of the variables. That variable is chosen as the
ordinate for the axes on which the straight line will be plotted. Then the
best-fit straight line is the one that has the minimum errors in the ordinate.

We are thus looking for an equation of the usual form

y = mx + b, (4.48)

where b is the y-intercept with [b] = [y], and m is the slope with [m] =
[y/x]. We first define the error in each reading as the difference in the
ordinate between the measured value, yi , and the straight line’s ordinate,
(mxi + b), for all values of the abscissa, xi :

Eyi = yi − (mxi + b). (4.49)

We define a measure S of the total error as the sum of the square of the
errors at every point on the abscissa, xi , where values of the ordinate, yi ,
are given, that is, as

S =
n∑

i=1

(Eyi )
2 =

n∑
i=1

[yi − (mxi + b)]2. (4.50)

The minimum of the measure of the total error is then found by differen-
tiating S with respect to m and b and so determining the values of m and
b needed to plot eq. (4.48):

∂S

∂m
= 2

n∑
i=1

[(yi −mxi − b)(−xi)]

= −2
n∑

i=1

xiyi + 2m
n∑

i=1

x2
i + 2b

n∑
i=1

xi = 0, (4.51)

and

∂S

∂b
= 2

n∑
i=1

[(yi −mxi − b)(−1)]

= −2
n∑

i=1

yi + 2m
n∑

i=1

xi + 2nb = 0. (4.52)

Equations (4.51) and (4.52) are a pair of linear algebraic equation that can
be solved (see Problem 4.28) to yield the following values of m and b:

m =
n

n∑
i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1

yi

)

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 , (4.53)
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and

b =

(
n∑

i=1

x2
i

)(
n∑

i=1

yi

)
−
(

n∑
i=1

xiyi

)(
n∑

i=1

xi

)

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 . (4.54)

Note that eqs. (4.53) and (4.54) have different physical dimensions
that depend on the particular physical problem being modeled (see
Problem 4.28).

Consider now the data displayed in the first two columns of Table 4.3,
which are the result of another, virtual experiment. We will now determine
the best straight line that can be drawn through the data. First, we calculate
the products shown in the third and fourth columns of Table 4.3. Then we
sum all four columns to find the data in the last row of the table, which are
then substituted into eqs. (4.53) and (4.54) to find m = 0.85 and b = 1.26.
The best straight-line fit through the data of Table 4.3 is, then,

y = 0.85x + 1.26. (4.55)

Equation (4.55) is plotted in Figure 4.6, together with the data from
Table 4.3, and we see that the straight line seems to fit the data pretty
well. Can we characterize the quality of that fit, that is, just how well does
eq. (4.55) fit the given data? The quality of fit is expressed in terms of R2,
called “R squared,” which describes how well a curve regresses toward the

Table 4.3 A table of data from a virtual experiment used to
calculate the best-fit straight line approximation shown in
Figure 4.6.

i xi yi xiyi x2
i

1 0 1.0 0 0
2 1.0 2.1 2.1 1.0
3 2.0 2.8 5.6 4.0
4 3.0 3.6 10.8 9.0
5 4.0 5.0 20.0 16.0
6 5.0 5.5 27.5 25.0
7 6.0 8.0 48.0 36.0
8 7.0 6.4 44.8 49.0
9 8.0 7.4 59.2 64.0

9∑
i=1

xi = 36.0
9∑

i=1

yi = 41.8
9∑

i=1

xiyi = 218.0
9∑

i=1

x2
i = 204.0
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data from which it was derived. R2 is a number between 0, which indicates
no fit at all, and 1, which describes a perfect fit. (There are many math-
ematical and statistical computational packages that include the formulas
needed to calculate R2.)

y

x
1 2 3 4 5 6 7 8

8

6

4

2

Figure 4.6 A best-fit straight line for the data in
Table 4.3 produced by least squares. It is
analytically represented as y = 0.85x + 1.26.

Problem 4.27. Verify the final forms of eqs. (4.51) and (4.52).
Problem 4.28. Verify the equations for m and b given in eqs. (4.53)

and (4.54).
Problem 4.29. Discuss and explain the dimensional differences

between eqs. (4.53) and (4.54).
Problem 4.30. Verify the terms in the third and fourth columns of

Table 4.3, as well as the sums of all four columns.
Problem 4.31. Verify the calculations of m and b found from the

results in Table 4.3.

4.7 Elementary Statistics

What do we do after we have recorded a bunch of measurements or cal-
culated several values of something? A more meaningful phrasing of this
question would be: How do we organize and present our results so that we
are better able to understand and communicate the data? Our answer to this
question comes in two parts. In the first, we define the meaning of average,
while in the second, we discuss ways of drawing curves through data.
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4.7.1 Mean, Median, and Standard Deviation

We often want to average our results when making several measurements or
calculating several values of something. There are several ways of defining
the meaning of average, but we will limit our discussion to two: the mean
and the median.

In Figure 4.4 we showed data from a virtual experiment whose individual
measurement readings (and, occasionally, model calculations) vary from
one another. We want to deal with a single value, a best estimate of the
magnitude of the entire set of readings. We will take the average or mean of
a sample of n measurements as such a best estimate, where the arithmetic
mean or sample mean x̄ is defined as the sum of all of the individual readings
xi divided by the number of readings, n:

x̄ = x1 + x2 + x3 + · · · + xn

n
= 1

n

n∑
i=1

xi . (4.56)

Note that the calculation of the mean of a set of values given by eq. (4.56)
strongly resembles the way that the centroids of areas are calculated, and
for good reason!

There is one other measurement that is often cited as a meaningful indi-
cator of an “average” of a number of readings and that is the median,
which is defined as the measured value that is at the middle of the dis-
tribution. The median removes any bias that might be introduced by a
few values that differ significantly from the mean. For example, in the
virtual voltmeter experiment of Section 4.5.2, the median is 54, which
is the same as the mean. On the other hand, had the five readings been
54, 53, 65, 53, and 55 V, then the mean rises to 56 V, while the median
stays at 54.

In Table 4.4 we show a collection or sample of 100 noise level measure-
ments of the noise due to traffic as measured in a schoolyard playground.
In addition to traffic noise, the microphones also picked up the occa-
sional noise due to children in the playground who, excited by the
experiment, made some loud sounds as they passed by. We see that
for these measurements the mean is higher than the median, which is
likely due to the relatively large number of readings in the 90–91 dB
interval.

In addition to identifying the mean as our best estimate, we would like
to estimate the spread or dispersion of the set of measurements about the
mean. Clearly, if this estimate of the spread is small in some sense, then
we can attach a high precision to the mean x̄ . The accepted statistical
measure of this estimate of dispersion is the sample variance, s2, defined in
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Table 4.4 A sample of 100 noise level
measurements (in decibels (dB)) made in
a schoolyard playground.

Decibels Number of Observations

90–91 x x x x x x x x
88–89 x x x x x
86–87 x x x
84–85 x x
82–83 x x x x
80–81 x x
78–79 x x x
76–77
74–75 x x x x x x
72–73 x x x x

Mean 70–71 x x x x x x
68–69 x x x

Median 66–67 x x x x x x x
64–65 x x x x x
62–63 x x x x x x x x x
60–61 x x x x x x x x x x x x x x
58–59 x x x x x x
56–57 x x x x x x x x
54–55 x x x x
52–53 x
50–51

terms of the deviation of each reading from the mean, (xi − x̄), as:

s2 ≡ (x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 + · · · + (xn − x̄)2

n − 1

= 1

(n − 1)

n∑
i=1

(xi − x̄)2.

(4.57)

The standard deviation, s, is defined as the square root of the sample
variance:

s ≡
[

1

(n − 1)

n∑
i=1

(xi − x̄)2
]1/2

. (4.58)

We often see the symbol σ used for the standard deviation, but that usage
is correct only when the calculation is performed for the total population
or the complete set of all the objects being measured. When we are taking
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readings or doing calculations, we are taking a sample of all of the values
that could, in principle, be obtained. In that case, s is the correct notation
for the standard deviation of that sample. (Similarly, when the calculation
of a mean is done for an entire population, it is denoted by µ, rather
than x̄ .)

Note that in calculating the standard deviation, the deviation of each
value or reading from the mean is squared before being added to the com-
parable deviations of the rest of the readings. This is done to eliminate the
sign differences that occur because the deviation (xi − x̄) can be positive
or negative, depending on whether the reading xi is greater or smaller than
the mean x̄ . Thus, only positive numbers are added when the standard
deviation is calculated. Also note that eq. (4.58) clearly suggests that the
best way to increase the precision of the answer is to increase the number of
readings or calculated values. Indeed, an infinite number of measurements
would, in theory, produce perfect precision because the standard deviation
vanishes in the limit n→∞. We also point out that just as the calculation
of the mean parallels the calculation of the location of the centroid of an
area about one axis, the calculation of the variance (eq. (4.57)) parallels
the calculation of the second moment of area about that same axis.

Notwithstanding the physical analogy just given, the interpretation of
the standard deviation, s or σ , is difficult because its units are squares of
the units of the variable, x . However, we can give meaning to the standard
deviation when we relate it to the mean of the data set, x̄ orµ. This meaning
is embedded in the Empirical Rule that tells us, approximately, where the
data points lie with respect to the mean. The following heuristics describe
the data set that underlies a distribution that is, approximately, a mound
shape:

• almost all of the data points lie within 3 standards of deviation of the
mean of the data set, that is, within the window (x̄ ± 3s) for samples
and within the window (µ± 3σ) for complete populations;
• some 95% of the measurements lie within 2 standards of deviation of

the mean of the data set, that is, within the window (x̄±2s) for samples
and within the window (µ± 2σ) for complete populations; and
• some 68% of the measurements lie within 1 standard of deviation of

the mean of the data set, that is, within the window (x̄± s) for samples
and within the window (µ± σ) for complete populations.

4.7.2 Histograms

Another way of displaying measured data is the histogram or bar chart in
which a distribution of the frequency of occurrence of the measured quant-
ity is displayed. The histogram’s abscissa indicates the values recorded,
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Figure 4.7 A histogram of the noise
measurements given in Table 4.4, with a
continuous approximation of the same noise
level data superposed as a dotted line. Here the
data were taken and recorded in 6-dB windows
or intervals. For example, there are 30
measurements registered in the 56–62 dB
window.

while its ordinate represents the number of times the values occur. The
histogram shown in Figure 4.7 displays the same data given in Table 4.4
with the measured sound pressure levels grouped in 6-dB intervals or win-
dows. Thus, the bar between 56 and 62 dB represents the total number of
measurements that registered, respectively, 56, 57, 58, 59, 60, or 61 dB.
Two questions occur immediately: Why construct histograms? and How
big should the intervals be?

The main reason for constructing a histograms is that it offers a graphic
depiction of the frequency of events, so that problematic repetitions of
particular events are readily identified. Histograms can also be used to
generate approximate plots based on the data they express. For example,
Figure 4.7 also shows a continuous approximation of its 6-dB histogram.
Both the histogram and its continuous counterpart show us that the largest
number of readings of outdoor noise in the schoolyard occur in the 56–62
and 86–92 dB windows. This prompts us to inquire about the cause(s) of
readings at these two levels. In response, we can identify the peak in the
86–92 dB window as deriving from the children yelling at the microphone,
which in turn allows us to note that the playground noise is more generally
at levels less than 86 dB, with the remaining peak occurring at the relatively
low levels of 56–62 dB.
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Figure 4.8 Two more histograms of the noise measurements given in
Table 4.4. The data were taken and recorded in, respectively, (a) 2-dB
and (b) 10-dB windows.

How do we decide on the size of the intervals or windows? We want the
interval to be large enough to have enough data to minimize the chance of
spurious fluctuations, yet small enough that we don’t throw out data that
would indicate serious events within the interval. The data of Table 4.3
(and the 6-dB histogram of Figure 4.7) are displayed in Figure 4.8 in histo-
grams with intervals of (a) 2 dB and (b) 10 dB. We see that with the larger
interval we have lost the (identifiable) peak due to the children’s screaming,
while with the smaller interval we have many more peaks and fluctuations.
As a practical matter, experience suggests that the number of bars in a
histogram should roughly equal the square root of the number of data
entries,

√
n.

How did we draw the curve representing the continuous version of the
histogram in Figure 4.7? First, we assumed the validity of the continuum
hypothesis, which states that such discrete data can be plotted as a con-
tinuous curve. Second, we chose the number of intervals to get a relatively
smooth and meaningful curve. Just as with the underlying histogram, this
meant going back to the original data (i.e., Table 4.4) to choose an inter-
val size large enough to contain a significant number of points, yet not so
large that variations within the interval are drowned out. We constructed
Table 4.5 to aid in this process of choosing an interval size. Table 4.5 organ-
izes the data in Table 4.4 in terms of the number of points within intervals
of length� centered around 66 dB: There are 13 readings in the interval of
� = 4 dB, 27 in the interval of� = 8 dB.

A plotted curve of the data of Table 4.5, in Figure 4.9, helps us better
visualize and understand the data. If the length of the measuring interval�
is too small, say< 4 dB, the density fluctuates a lot and is not representative
of the complete picture. If the interval � is too large, say > 8 dB, the
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Table 4.5 An organizing chart of the data in Table 4.4 that allows us to
estimate the number of data points in intervals of varying length �. This form
of the data enables the drawing of the plot shown in Figure 4.9.

Interval
length,�

1 2 3 4 5 6 7 8 10 20 30 40 50

Interval, 66.5 67 67.5 68 68.5 69 69.5 70 71 76 81 86 91
66±�/2 65.5 65 64.5 64 63.5 63 62.5 62 61 56 51 46 41

Number of
readings in
interval

6 9 12 13 17 19 24 27 37 68 78 85 100

Density 6 4.5 4 3.25 3.4 3.17 3.43 3.34 3.7 3.4 2.6 2.38 2.00

density curve is smoothed out to the extent that all of the meaningful
variations have disappeared. Thus, an interval such that 4 < � dB < 8
would appropriately approximate the number of readings as a continuous
function of the noise level. We have 100 readings here, so 10 = √100
histogram bars are appropriate for the range 50–90 dB, resulting in the
shown width of 4 dB. However, as with other aspects of modeling, the
number of histogram bars is to some extent a matter of taste.

We have not offered any criteria to aid in choosing a measuring interval
because there are none. The best path is to organize the data as in Table 4.5,
use it to plot a curve such as that in Figure 4.9, and then exercise our best
judgment as to the size of�.
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Figure 4.9 An illustration of the continuum
hypothesis, showing how the density of the
readings depends on variation of the measuring
interval.
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Lastly, all of the calculations outlined in this section can be done on a
computer. Care and thought are invaluable because, at best, a computer
does only what it’s told to do. Given erroneous instructions or bad data, its
results will be erroneous and bad!

Problem 4.32. Determine the standard deviation for the data presen-
ted in Table 4.4.

Problem 4.33. Draw a histogram for the data in Table 4.4 with 10
intervals of 4 dB width.

Problem 4.34. Show that the square of the sample variance of
eq. (4.57) can be cast in the alternative form

s2 = 1

(n − 1)


 n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

 .

4.8 Summary

We have devoted this chapter to discussions of approximations and their
limits, and of model validation, including both qualitative and statistical
methods. We have shown the importance of Taylor and algebraic series
expansions, including applications to stretched strings (Taylor series of
hyperbolic functions), gravitational forces (binomial expansions), and
thermal expansion (algebraic approximations). We have emphasized the
need to validate models, as well as the roles played by dimensional and
qualitative analyses in model validation. We have also stressed the import-
ance of numerical approximations and of significant figures, especially as
regards their proper display and interpretation.

Working with mathematical models means that we are constantly using
numbers that derive from calculations or experiments. These numbers
always incorporate error. We have discussed both random and systematic
errors, and how they affect the precision and accuracy of any set of data. We
also looked briefly at statistical techniques that could be used to quantify
such errors, introducing the concepts of mean, median, and standard devi-
ation. We showed how curve fitting could be used to approximate functions,
and we showed illustrative examples using both the least squares method
and the continuum hypothesis to develop statistically based numerical
approximations.
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4.9 Appendix: Elementary Transcendental

Functions

The so-called elementary transcendental functions are the trigonometric
functions (sin x , cos x), the exponential functions (ex , ax ), the hyperbolic
functions (sinh x , cosh x), and the logarithmic functions (ln x =
loge x , loga x). We will present some basic results and relationships for
these functions, rather than derivations and proofs. Some of the results
make use of the notation i = √−1, which is central in relating, for example,
the trigonometric functions to the exponential. In fact, we will use what
famed physicist Richard Feynman called “the most remarkable formula in
mathematics”:

eix = cos x + i sin x . (4A.1)

We also note that that the imaginary (as it is often called) number i is
often denoted instead by j = √−1, especially by the electrical engineering
community, but we will stick to the traditional i. Thus, this Appendix
assumes some comfort with basic notions of the arithmetic of complex
numbers.

We begin with the formal definition of the natural logarithm (also called
the Naperian or the hyperbolic logarithm), ln x :

ln x ≡
∫ x

1

dt

t
, (4A.2)

where the t in the integrand of eq. (4A.2) is a dummy variable of integration,
and where three special values of the natural logarithm are noted:

ln 1 = 0, ln 0 = −∞, ln e = 1. (4A.3)

The number e is defined as:

e = lim
n→∞

(
1+ 1

n

)n

= 2.7182818284 . . . . (4A.4)

In view of the properties (4A.3), the Taylor series representation (see
eq. (4.1)) of the natural logarithm is defined in terms of an argument
that is centered around the value a = 1 (for x �= −1 and |x| ≤ 1):

ln(1+ x) = x − x2

2
+ x3

3
− · · · . (4A.5)

Further, the natural logarithm is related to the common or Briggs logarithm,
which we colloquially call the logarithm to base 10, by

ln x = (ln 10)(log10 x) ∼= 2.303 log10 x . (4A.6)
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The exponential function is defined as the inverse of the natural logarithm,
that is, x = ln y if y = ex . The Taylor series for the exponential function is:

ex = 1+ x + x2

2! +
x3

3! + · · · +
xn

n! + · · · . (4A.7)

The results that now follow are obtained by formal manipulation from this
Taylor series. For example, from eq. (4A.7) it can be shown that

ex+y = 1+ (x+y)+ (x + y)2

2! + (x + y)3

3! + · · ·+ (x + y)n

n! + · · · = ex ey ,

(4A.8)
and that for complex numbers a

eax = 1+ ax + (ax)2

2! +
(ax)3

3! + · · · +
(ax)n

n! + · · · = (e
x)a . (4A.9)

Further, building on the result (4A.9), we can confirm the formula
(4A.1) that Feynman found remarkable, which is known as the De Moivre
Theorem:

eix =
(

1− x2

2! +
x4

4! − · · ·
)
+ i

(
x − x3

3! +
x5

5! − · · ·
)
= cos x + i sin x .

(4A.10)
In the last step of eq. (4A.10) we are recognizing the standard Taylor series
expansions of the trigonometric functions that appear as the middle terms
in that equation. Further,

e−ix =
(

1− x2

2! +
x4

4! − · · ·
)
− i

(
x − x3

3! +
x5

5! − · · ·
)
= cos x− i sin x ,

(4A.11)
so that from eqs. (4A.10) and (4A.11) we find we can write the
trigonometric functions as:

cos x = 1

2

(
eix + e−ix

)
, sin x = 1

2i

(
eix − e−ix

)
(4A.12)

We are now in a position to write down relations for the hyperbolic
functions by replacing x by ix, and recalling the definition of i, so that:

cosh x = 1

2

(
e−x + ex) = cos(ix), sinh x = 1

2

(
ex − e−x) = −i sin(ix).

(4A.13)
It also follows from eqs. (4A.13) that

cosh(ix) = 1

2

(
eix + e−ix

)
= cos x , sinh(ix) = 1

2

(
eix − e−ix

)
= i sin x .

(4A.14)
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While the structure and appearance of the trigonometric and hyperbolic
functions appear to be very similar, their behavior is not. The trigono-
metric functions are periodic, with period 2π , and their values are always
bounded by ±1, that is, −1 ≤ (sin x , cos x) ≤ 1. The hyperbolic cosine
increases monotonically for both positive and negative values of its argu-
ment, while the hyperbolic sinusoid is asymmetric about the origin and
so approaches −∞ as x → −∞. Oh, what a difference an i makes! We
show further details of all of the elementary transcendental functions in
Table 4A.1.

Table 4A.1 Behavioral features of the elementary transcendental
functions.

Behavior
f (x) Value at x = 0 as x →∞ Behavior of f (x)

sin x 0 | sin x| ≤ 1 Oscillates continuously between ±1
cos x 1 | cos x| ≤ 1 Oscillates continuously between ±1
ex 1 →∞ Uniformly increases as (x > 0)→∞
sinh x 0 →∞ Uniformly increases as (x > 0)→∞;

Uniformly decreases as (x < 0)→−∞
cosh x 1 →∞ Uniformly increases as x →±∞
ln x −∞ →∞ Uniformly increases as (x > 0)→∞
log10 x −∞ →∞ Uniformly increases as (x > 0)→∞

Finally, some derivatives and integrals of the elementary transcendental
functions are:

d

dx
sin x = cos x ,

d

dx
cos x = − sin x ,

d2

dx2
sin x = − sin x ,

d2

dx2
cos x = − cos x .

(4A.15)

d

dx
ex = ex ,

dn

dxn
ex = ex . (4A.16)

d

dx
sinh x = cosh x ,

d

dx
cosh x = sinh x ,

d2

dx2
sinh x = sinh x ,

d2

dx2
cosh x = cosh x .

(4A.17)

d

dx
ln x = 1

x
,

∫
ln x dx = x ln x − x . (4A.18)
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4.11 Problems

4.35. Estimate the error made in approximating y(x)= sin x with a
Taylor’s formula to n = 4 by evaluating the remainder R5.

4.36. Do the statements that sin x 
 1 and tan x 
 1 produce similar
approximations? Confirm and explain your answer.

4.37. The readings of an old-fashioned analog voltmeter—it has dials,
not digital readouts!—are subject to some systematic error where
all of its readings are too large. The magnitude of the error has been
found to vary linearly from 1 V at a dial reading of 5 V to 4 V at a
dial reading of 80 V.

(a) What are the correct voltages for dial readings of 80, 100, 50, 1,
35, and 10 V?

(b) What is the percentage error for each of the six (6) readings in
part (a)?

4.38. (a) Is it possible to have a set of measurements that are precise but
not accurate? Explain.

(b) Is it possible to have a set of measurements that are accurate but
not precise? Explain.

4.39. (a) Write the Taylor series expansion for ex about x = 0.
(b) Calculate e0.5 to five significant figures using the first four terms

of the series found it part (a).
4.40. (a) What percentage error was incurred in the calculation of part

(b) of Problem 4.39 if the “true value” of e0.5 is 1.6487?
(b) Use the Taylor remainder (eq. (4.5)) to calculate the error in

e0.5 after only four terms. Is the error calculated in part (a) of
this problem acceptable? Explain.

4.41. Evaluate the following function by hand (no calculators or com-
puters, please) for x = 4:

(
1+ 2

x

)1/4

.

4.42. How does an observer know when enough is enough, that enough
measurements have been taken?

4.43. Make a list of five new (i.e., not found in the text) examples of
systematic errors.
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4.44. Make a list of five new (i.e., not found in the text) examples of
random errors.

4.45. The resistance of a resistor, R, is made by passing several currents, I ,
through it and measuring the corresponding voltage drops, V , and
currents with imprecise, analog meters. The resulting data are:

xi = V (V ) 10 20 30 40 50 60 70 80

yi = I (A) 0.8 1.1 2.5 4.2 4.3 4.7 5.8 6.4

(a) What kinds error will be found in the data?
(b) Assuming that V = IR, plot the data (by hand!) and “eyeball”
in the best-fit line for that data.

4.46. Use the method of least squares to plot a V versus I curve for the
data of Problem 4.45. How does it compare with the “eyeball” result
of Problem 4.45?

4.47. The data presented below comprise 100 readings of noise levels taken
6 mi away from an airport, taken late in an evening at 15 s intervals.
Find the mean, median, and standard deviation of these data.

Observed Decibel Values (dB), n = 100

50 50 53 48 45 51 57∗ 75∗ 85∗ 82∗
75∗ 71∗ 65∗ 61∗ 60∗ 60∗ 55∗ 55∗ 51 50
49 49 48 51 49 54 48 48 47 49
49 49 49 49 48 47 50 49 48 49
47 48 48 50 50 54 48 47 47 48
48 49 48 47 50 49 48 48 48 48
48 48 52 50 53 49 49 48 49 47
49 55 51 50 49 48 49 45 48 50
50 51 49 50 47 47 47 47 47 47
48 50 49 49 49 49 49 49 56 49

4.48. The starred numbers in the data of Problem 4.47 are readings taken
while an aircraft was flying directly overhead. If these data are
deleted, what are the mean, median, and standard deviation of
the remaining 88 data points?

4.49. Draw (a) a histogram of all of the data of Problem 4.47 and (b) a
continuous curve of the number of readings as a function of the
measured noise level.

4.50. Determine a far-field approximation of the function f (r) given below
as a binomial expansion for values of r � a.

f (r) =
√

a2 + r2.
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4.51. The electric potential, Ve , at a distance, r , along the axis of revolution
of a disk of radius a is given by

Ve = q

2πa2εo
(
√

a2 + r2 − r),

where q is the total charge that is distributed uniformly over the
surface of the disk and ε0 is the permittivity constant. Using the
results of Problem 4.50, find a far-field approximation for the electric
potential for values of r � a.

4.52. Compare the minimum number of terms kept in the binomial
expansions of the solutions to Problems 4.50 and 4.51. Are those
numbers the same, or not? Why are those numbers the same, or not?

4.53. Suppose we need to calculate the radial extension or deflection w
of a very thin, spherical balloon, meaning that the sphere’s radius
extends from R to R + w as the balloon is pressurized. It is made of
an elastic material. A colleague finds a textbook that shows a formula
for the pressure, p, that looks reasonable:

w

R
= pR

Eh
,

where h is the balloon’s wall thickness, and E is the modulus of the
material of which the sphere is made. Is this equation dimensionally
consistent?

4.54. Analyze the limit behavior of the equation presented in Problem 4.53
as the pressure, modulus, radius, and thickness both go to zero and
become infinitely large. Does this limit behavior conform with your
intuitive estimate of what should happen?

4.55. Use the equation in Problem 4.53 to derive an estimate of the mag-
nitude of the pressure, p, as a fraction of the modulus, E . Estimate
the pressure fraction for a thin-walled sphere, for which h/R 
 1.


