
7
Modeling Free Vibration

We now turn to modeling vibration, the behavior of something moving
back and forth, to and fro, usually in an evident rhythmic pattern. Vibration
not only occurs all around us, but within us as well, as noted in 1965 by a
well-known British mechanical engineer, R. E. D. Bishop:

After all, our hearts beat, our lungs oscillate, we shiver when we are cold, we sometimes
snore, we can hear and speak because our eardrums and our larynges vibrate. The
light waves which permit us to see entail vibration. We move by oscillating our legs.
We cannot even say ‘vibration’ properly without the tip of the tongue oscillating. And
the matter does not end there—far from it. Even the atoms of which we are constituted
vibrate.

Other vibratory phenomena that come to mind are pendulums, clocks,
conveyor belts, machines and engines, buildings subjected to a broad array
of moving forces (e.g., pedestrians, air conditioners, elevators, wind, earth-
quakes), as well as tides and seasons. Clearly, we could go on. But the more Why?

interesting questions for us are: Do these diverse instances of vibration
have anything in common? If so, what? How do we model their common
features?

We devote most of this chapter to modeling a well-known “golden oldie,”
the swinging or vibrating pendulum. It provides a familiar platform upon
which we can lay out a number of modeling strategies. Then we will provide
a few examples of freely vibrating phenomena. We will also illustrate how
the mathematics of free vibration can be used to model stability phenom-
ena. In Chapter 8 we will provide some more examples and then go on to
model forced vibration.
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176 Chapter 7 Modeling Free Vibration

7.1 The Freely-Vibrating Pendulum–I:

Formulating a Model

We will now model the free vibration of a pendulum, starting with someGiven?

experimental results and using dimensional analysis, some basic phys-
ics, and some basic mathematics (e.g., linearity, second-order differential
equations) to model that motion.

7.1.1 Some Experimental Results

We started by building some very simple pendulums in the laboratory,How?

each consisting of a lead-filled wooden ball suspended from a stand by an
ordinary piece of string. A basic schematic of the laboratory set-up is shown
in Figure 7.1. The balls were initially held at rest at some angle, θ0, and then
they were let go to swing back and forth until they all stopped moving. As
each pendulum swung, we measured its period of free vibration, the time T0

it takes to swing through two complete arcs (from θ = θ0 to θ = −θ0 and
back again). The periods of vibration were measured with photoelectric
cells that were placed at the lowest point on the pendulum arc (θ = 0) and
were in turn connected to digital counters operating with a gated pulse.
The counters were turned on by the first passing of the pendulum and then
off again at the second passing, thus providing a direct read of one-half of
the period T0.

Fixed point of pendulum (0,l )

String of length l

Mass (m) located at
coordinates (x, y )

x

y

Perigee
located
at (0, 0)

θ

Figure 7.1 The geometry of a planar
pendulum. Note that the origin of the
coordinate system is located at the
pendulum’s perigee, the lowest point of
its arc.
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Table 7.1 The dependence of the period, T0, of a freely-vibrating
pendulum on its initial amplitude of vibration, θ0. The mass is 390 gm
and the string length is 276 cm.

θ0(deg) θ0(rad) T0 measured (sec) (T0 measured)/(3.372)

8.34 0.1456 3.368 1.00
13.18 0.2300 3.368 1.00
18.17 0.3171 3.372 1.00
23.31 0.4068 3.372 1.00
28.71 0.5011 3.390 1.01
33.92 0.5920 3.400 1.01
39.99 0.6980 3.434 1.02
46.62 0.8137 3.462 1.03

The experiments were done with two different masses (237 gm and
390 gm), each of which was hung from strings of two different lengths
(276 cm and 226 cm). The experimental data thus obtained are shown in
Tables 7.1 and 7.2; note that each data point shown represents the average
of five measured values. Thus, the data presented result from a consistent,
repeatable experiment. The data in Table 7.1, for the larger mass (390 gm)
and the shorter string (276 cm), show how the period, T0, varies with dif-
ferent starting values of θ0. We see that the period varies with the initial
starting angle, θ0, but the dependence is very weak and exceeds 1% only
when θ0 ≥ 40◦.

Table 7.2 The dependence of the period, T0, of a
freely-vibrating pendulum on its length and on its
mass. The data show a marked change with length,
but virtually no change with mass.

m = 237 gm m = 390 gm

l = 226 cm 3.044 sec 3.058 sec
l = 276 cm 3.350 sec 3.372 sec

The data in Table 7.2 summarize the periods across the four possible
combinations of mass and length that were available for the pendulums
used in this experiment. This data suggest that the period varies very little,
if at all, with mass: increasing the mass by some 65% from 237 gm to 390 gm
changes the period by a fraction of 1%. On the other hand, increasing the
length by 22% from 226 cm to 276 cm increases the period by approxi-
mately 10%. Thus, the data suggest that the free motion of a vibrating
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pendulum is periodic, and that the period of vibration does not depend on
the pendulum’s mass, but that it does depend on the pendulum’s length.

Problem 7.1. Assume a hypothetical relationship, T0 = amb , for the
dependence of the period of a pendulum on its mass.
Determine the unknown parameters, a and b, using
the data in Table 7.2. (Hint : Logarithms may be useful
here.)

Problem 7.2. Assume a hypothetical relationship, T0 = cld , for the
dependence of the period of a pendulum on its length.
Determine the unknown parameters c and d using the
data in Table 7.2. (Hint : Logarithms may be useful
here.)

7.1.2 Dimensional Analysis

We will now apply some dimensional analysis results to formalize the results
we obtained in the laboratory. In Section 2.4.2 we used the Buckingham Pi
theorem to determine that the period of vibration, T0, of a pendulum was
related to its length, l , and the gravitational acceleration, g [see the first of
eq. (2.30)]:

T0 = �1

√
l

g
. (7.1)

Note that the pendulum’s period does not depend on mass, a result sup-Valid?

ported by the data in Table 7.2, and that the constant,�1 is dimensionless.
We can determine the value of �1 from the data given in Table 7.2. For
the pendulum of length l = 276 cm, one measured value of the period is
T0 = 3.372 sec, so that with g = 980 cm/sec/sec,

�1 = 3.372√
276/980

∼= 6.35. (7.2)

Is the number “6.35” in eq. (7.2) some new universal constant? Actually, no.
Rather, it is an approximation of another well-known constant: 2π ∼= 6.28.
Thus, substituting this judgment call about the constant into eq. (7.2) yields
the final result,

T0 = 2π

√
l

g
. (7.3)
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Table 7.3 Calculated values of
the period, T0, of a
freely-vibrating pendulum that
provide support for the
experimental data presented in
Table 7.2.

l (cm) T0 (sec)

226 3.02
276 3.33

We can use eq. (7.3) to predict values of the period to match the remaining Predict?

Verified?values displayed in Table 7.2, as shown in Table 7.3. The calculated pre-
dictions and the experimental data agree to within less than 1.5%. Thus,
it seems that we have a pretty good model—determined from dimen-
sional analysis and use of some experimental data—that works quite well
and predicts the remaining experimental data, including both the period’s
dependence on length and its independence of mass. We will confirm the
model (7.3) again before we’re done with the pendulum.

7.1.3 Equations of Motion

We formulate the problem by writing the mathematical expression of a How?

balance or conservation principle (see Section 1.3.3) from physics. The
principle is Newton’s second law: The time rate of change of momentum is
equal to the net force producing it; that momentum change is in the same
direction as the net force. Newton’s second law is both a balance principle
and a conservation principle: it reflects a balance of the forces acting on
a particle or system, and it also reflects the conservation of momentum.
Written as a balance principle (see Problems 7.3 and 7.4), Newton’s second
law in a plane is: ∑

Fx = m
d2x

dt 2
, (7.4a)

and ∑
Fy = m

d2y

dt 2
, (7.4b)

where x(t ) and y(t ) are the time-dependent coordinates of a mass, m, acted
on by net forces

∑
Fx and

∑
Fy , respectively.

We want to apply Newton’s second law, commonly referred to as equa-
tions of equilibrium, to the pendulum depicted in Figure 7.1. The pendulum
is simply a mass, m, attached to the end of a string of length, l . It swings in
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a plane from an attachment point with coordinates (0, l) so that the origin
of the coordinates coincides with the perigee or low point of the pendulum’s
arc. The coordinates (x , y) of the pendulum mass can be written in terms
of the string length and the angle θ between the string and the y-axis:

x(t ) = l sin θ(t ), (7.5a)

and
y(t ) = l(1− cos θ(t )), (7.5b)

In Figure 7.2 we show a free-body diagram (FBD) of the two forces that
act on the mass: the tension in the string, T , and the weight, mg , which
acts due to the pull of gravity. Then we can identify the net forces along
the coordinates from the FBD, so that eqs. (7.4) can then be written as
equations of motion:

m
d2x

dt 2
=
∑

Fx = −T sin θ , (7.6a)

and

m
d2y

dt 2
=
∑

Fy = T cos θ −mg . (7.6b)

x

y

mg

m

T

mg sin �
mg cos �

�

Figure 7.2 A free-body
diagram (FBD) of the oscillating
planar pendulum. It shows the
two forces acting on the
pendulum’s mass, m, the string
tension, T , and the weight, mg ,
and their components in the
radial and tangential directions.
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In principle, all we need to do now is integrate eqs. (7.6a–b) to find how
the pendulum’s coordinates vary with time, from which we can then find
out whatever else we might want to know about the pendulum. However,
life’s not that easy, for a number of reasons. First, we don’t know the tension
in the string, T , so that the right-hand sides of both of eqs. (7.6a–b) are
unknown. Second, since we have two equations with three unknowns— Improve?

x(t ), y(t ), T —we are prompted to wonder how Newton’s second law
would look if rewritten in radial (along the string) and tangential (to the
pendulum’s arc) coordinates. In fact, those equations are

∑
Fradial = ml

(
dθ

dt

)2

, (7.7a)

and ∑
Ftangential = ml

d2θ

dt 2
. (7.7b)

Equation (7.7a) clearly displays the familiar centripetal acceleration. If
we sum the forces in the FBD of Figure 7.2 in the radial and tangential
directions, we would find that

T = ml

(
dθ

dt

)2

+mg cos θ , (7.8a)

and

ml
d2θ

dt 2
+mg sin θ = 0. (7.8b)

Equations (7.8a–b) show two equations for two dependent variables,
the tension, T , and the angle, θ . Equation (7.8b) is a single equation with
a single unknown, θ , so it can in principle be solved on its own, which
thus determines the location of the mass [see also eqs. (7.5a–b)]. Then the
tension, T , can be obtained directly by substituting the newly-found θ into
eq. (7.8a). We also note that eqs. (7.8a–b) are equivalent to eqs. (7.6a–b):
both are representations of Newton’s second law, eqs. (7.8a–b) written
in radial and tangential coordinates (l , θ), eqs. (7.6a–b) in rectangular
coordinates (x , y).

We further note that eqs. (7.8a–b) are decidedly nonlinear because the
dependent variable θ(t ) or its derivatives have an exponent different than
1. This is most obvious in eq. (7.8a) because of the centripetal acceleration
(see Problem 7.5), but it is equally true of eq. (7.8b) because

sin θ = θ − θ
3

3! +
θ5

5! − · · · . (7.9)

As we noted in Section 1.3.4, the presence of such nonlinear terms means
that superposition, one of the most powerful weapons in the arsenal of
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mathematics, is no longer available. We will return to this point in greater
detail in Section 7.3.

Problem 7.3. Why do eqs. (7.4a–b) represent Newton’s second law
as a balance principle?

Problem 7.4. How would eqs. (7.4a–b) be written as a conservation
principle?

Problem 7.5. Identify and explain all of the nonlinearities in
eq. (7.8a).

7.1.4 More Dimensional Analysis

Are the dimensions of eqs. (7.8a–b) correct and consistent? Can we useValid?

dimensional information to further our understanding? In Table 7.4, we
show (again, see Table 2.2) the pendulum variables expressed in terms of
the fundamental dimensions of mass, length, and time. With this data, we
can confirm (see Problem 7.6) that each of the terms in eqs. (7.8a–b) has
the physical dimensions of force, or in terms of fundamentals, (M×L)/T2,
which is appropriate for an equation of equilibrium. Further, we have
satisfied the test that every stand-alone term in an equation has the same
dimensions.

We now introduce a scaling factor, ω0, that has, by definition, the dimen-
sions of 1/T. The scaling factor also allows us to introduce a dimensionless
time variable, τ , defined as

τ = ω0t . (7.10)

Table 7.4 The fundamental dimensions
of the six derived quantities chosen to
model the oscillating pendulum.

Derived Quantities Dimensions

Length (l) L
Gravitational acceleration (g ) L/T2

Mass (m) M
Period (T0) T
Angle (θ) 1
String tension (T ) (M× L)/T2
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Then the tangential equation of motion (7.8b) can be written as (see
Problem 7.7)

lω2
0

d2θ(τ )

dτ 2
+ g sin θ(τ ) = 0. (7.11)

Hence, if we choose the scaling factor, ω0, to be

ω0 =
√

g/l , (7.12)

we can write the tangential equation of motion (7.11) in a rather elegant
form that is completely dimensionless:

d2θ(τ )

dτ 2
+ sin θ(τ ) = 0. (7.13)

Note that the dimensions of the scaling factor are reciprocal to the dimen-
sions of the period of free vibration, T0, and that eqs. (7.3) and (7.12) can
be combined to eliminate the common radicand, thus yielding:

T0 = 2π

ω0
. (7.14)

Equation (7.14) strongly suggests that we should recognize that the scaling Use?

factor, ω0, is actually the circular frequency of the pendulum, that is, the
measure of the pendulum’s periodicity expressed in radians per unit of
time.

Now that we have confirmed dimensional consistency and cast at least
one of our equilibrium equations in an elegant, dimensionless form, can we
learn anything else? We can. We start by observing that | sin θ | ≤ 1. This
means that the acceleration term in eq. (7.11) must also exhibit similar
behavior: |d2θ/dτ 2| ≤ 1, which provides a time scale for the problem. To
demonstrate this, consider the function:

θ(τ ) = θ0 cos τ , (7.15)

for which it follows that

dθ(τ )

dτ
= −θ0 sin τ and

d2θ(τ )

dτ 2
= −θ0 cos τ . (7.16)

which means that θ(τ ) and all of its derivatives with respect to τ have the
same maximum amplitude θ0.

If we choose to make our independent variable, t , dimensionless as we
just did, are there any restrictions we need to place on its dimensionless
counterpart, τ ? No. Equations (7.10) and (7.12) tell us that

τ = tω0 = t

1/ω0
, (7.17)
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which can be seen as a “verbal” or “conceptual equation”:

τ = actual physical time

a constant with dimensions of time
. (7.18)

Equation (7.18) tells us that we get to choose how we make our equationsUse?

dimensionless by choosing “a constant with dimensions of time” to match
the problem of interest. If we are modeling something that takes years,
the “constant” should be expressed in years. Then, small values of the
dimensionless time, τ , would mean times of weeks, days, or even hours.
Large values of the dimensionless time, τ , would mean times of decades,
centuries, or even millennia.

Sometimes the “constant” is determined or dictated by the physics
of the problem being investigated. For example, for a pendulum that
is 1 m long, ω0=

√
g/l ∼= 3.13 sec−1, we would say that the system

has a characteristic time of about one-third of a second—implying that
the pendulum is moving rather fast. For a rather long pendulum, say
l = 98 m, ω0 =

√
g/l ∼= 0.31 sec−1 the system has a characteristic time of

about 3 sec.

Problem 7.6. Identify the fundamental dimensions of each free-
standing term in eqs. (7.8a–b) and confirm that each
has net dimensions of force.

Problem 7.7. Substitute the dimensionless variable of eq. (7.10) into
eq. (7.8b) to verify eq. (7.11).

7.1.5 Conserving Energy as the Pendulum Moves

We now turn to a qualitative analysis of the behavior of solutions to theWhy?

differential equations of motion (7.6) or (7.8). But we start not with the
differential equations themselves, but with considerations of energy rooted
in the basic physics. When the pendulum is swinging through its arc, it
possesses kinetic energy and potential energy. As we will see, each of these
energies may vary with position, but both are present and their sum will
be a constant.

The kinetic energy, KE , is found from a familiar calculation:

KE = 1

2
m(speed)2. (7.19)
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The speed can be calculated in the usual way by differentiating the
coordinates of mass [eqs. (7.5a–b)] with respect to time, to find that (see
Problem 7.8)

KE = 1

2
m

(
l
dθ(t )

dt

)2

= 1

2
mgl

(
dθ(τ )

dτ

)2

. (7.20)

The potential energy of the swinging mass, PE , is measured with respect
to a datum through the origin of the coordinates (x = 0, y = 0) in another
familiar calculation:

PE = mgy(t ) = mgl(1− cos θ(τ )). (7.21)

Then the total energy, E(τ ), is found by adding eqs. (7.20) and (7.21):

E(τ ) = KE + PE = mgl

[
1

2

(
dθ(τ )

dτ

)2

+ (1− cos θ(τ ))

]
. (7.22)

How does the total energy vary with time? A straightforward differenti-
ation shows that

dE(τ )

dτ
= mgl

[
d2θ(τ )

dτ 2
+ sin θ(τ )

](
dθ(τ )

dτ

)
. (7.23)

Equation (7.23) is a remarkable result! The term in the brackets is identical
to the tangential equation of motion (7.8b). Thus, two lessons emerge.
First, we recover the equation of motion of a system by differentiating its
total energy. Second, if θ(t ) is such that the equation of motion is satisfied,
then the total energy is conserved :

dE(τ )

dτ
= 0 and E(τ ) = E0 = constant. (7.24)

Can we determine this constant value of energy, E0? We can by recog-
nizing that we imparted some energy to the pendulum when we let it start
swinging from a rest position θ0. Thus, the initial potential energy is, in
fact, the initial total energy:

PE(0) = mgy(0) = mgl(1− cos θ0) = E0. (7.25)
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Problem 7.8. What is the speed of the pendulum mass expressed in
polar coordinates? How does that relate to eq. (7.20)?

Problem 7.9. Can eq. (7.22) be simplified for small angles of
oscillation? If so, how?

Problem 7.10. How would eq. (7.23) appear after the simplifications
of Problem 7.9?

7.1.6 Dissipating Energy as the Pendulum Moves

Our discussion of the pendulum has thus far assumed it to be ideal in that
no energy was lost. We now extend our model to include the effects of theWhy?

damping forces that arise when motion is resisted by friction or air resist-
ance. Damping or friction forces are generally assumed to be the result ofHow?

viscous damping that is proportional to the speed of the object being ana-
lyzed (and slowed by the damping), with a constant of proportionality, c ,
called the damping coefficient. For a viscous damping force we have

Fdamping = −c(velocity), (7.26)

where c is a positive constant with dimensions of force per unit velocity or
M/T. The minus sign in eq. (7.26) reflects the fact that the viscous damping
slows or retards the pendulum motion by opposing it. For the swinging
pendulum, the retarding force would act tangentially, so that the friction
force would appear in a suitably modified version of the tangential equation
of motion (7.8b):

ml
d2θ

dt 2
+ cl

dθ

dt
+mg sin θ = 0. (7.27)

How does the inclusion of the damping force affect the energy of the
pendulum? The forms of the kinetic and potential energies are unchanged
by the damping force, so that the total energy can be written as before
[eq. (7.22)], except in terms of real time, t :

E(t ) = 1

2
ml2

(
dθ(t )

dt

)2

+mgl(1− cos θ(t )). (7.28)

The time rate of change of the energy is [again, much as before in eq. (7.23)]

dE(t )

dt
=
[

ml2 d2θ(t )

dt 2
+mgl sin θ(t )

](
dθ(t )

dt

)
,
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which in view of eq. (7.27) can be cast as

dE(t )

dt
= −cl2

(
dθ(t )

dt

)2

. (7.29)

Equation (7.29) shows that the pendulum’s total energy steadily decreases
with time.

We can take this a step further with the following argument. The energy
of an ideal pendulum as it begins from rest is entirely potential energy, and
its energy is entirely kinetic when the pendulum swings through its perigee
(because the origin of our coordinate system is located at the perigee).
Thus, on average, the kinetic and potential energies are approximately the
same, even in the presence of all but the most severe damping. To the
extent this argument is reasonable, we can approximate the total energy of
the pendulum—whether damped or not—as twice the kinetic energy:

E(t ) ∼= ml2
(

dθ(t )

dt

)2

(7.30)

Now we can eliminate the term (dθ/dt )2 between eqs. (7.29) and (7.30) to
obtain a differential equation for the energy E(t ):

dE(t )

dt
= −(c/m)E(t ). (7.31)

Note that the dimensions of (c/m) are force per unit velocity per unit mass Verify?

or 1/T. Thus, eq. (7.31) is dimensionally consistent.
Equation (7.31) is also a first-order differential equation with constant

coefficients, like the models developed in Chapter 5. Thus, the solution to
eq. (7.31) is

E(t ) = E0e−(c/m)t . (7.32)

Equation (7.32) shows that the total energy decays exponentially from its Use?

initial maximum value, E0, imparted by the pendulum’s initial position.
The rate at which the energy decays depends on a characteristic decay time,
m/c . The characteristic decay time has the proper dimensions, and its
precise value (measured in seconds, days, or centuries) will depend on the
particular pendulum being modeled. However, we can calculate the energy
decay as a function of time measured as a multiple of the characteristic
decay time. Table 7.5 shows us that the energy of a damped pendulum is
halved in a time equal to 0.69(m/c)—which is a useful indicator of energy
decay time.

We note in closing this part of the discussion that we have already
learned a lot about the swinging pendulum—and we have determined
that information without knowing the specific form of θ(t ) and without
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Table 7.5 The decay of the total
energy of an oscillating pendulum
expressed in multiples of the
characteristic decay time, m/c .

Time Energy

t = 0 E(t) = E0

t = 0.10(m/c) E(t) = 0.905E0

t = 0.69(m/c) E(t) = 0.500E0

t = 1.00(m/c) E(t) = 0.368E0

t = 5.00(m/c) E(t) = 0.007E0

solving the differential equations of motion that describe the pendulum’s
arc. Note, too, that we have not had to distinguish between linear and
nonlinear models of the pendulum’s behavior, so that the results already
obtained—and the methods used to obtain them—are valid for a relatively
large class of problems. We will go on to solve the differential equations
for the linear model of the pendulum in Section 7.2 and for its nonlinear
model in Section 7.5.

7.2 The Freely-Vibrating Pendulum–II: The

Linear Model

In Section 7.3 we will come to know the linear model of the pendulum as
the ubiquitous spring-mass oscillator. But now we want to know: How doesWhy?

a nonlinear model become linear? What do the solutions to linear models
look like?

7.2.1 Linearizing the Nonlinear Model

We turn a nonlinear model into a linear model by the process of lineari-How?

zation in which magnitudes and behaviors are assumed to be sufficiently
small in some sense that their products can be neglected. This may not
always be possible, and it must be done carefully even when it is possible,
because some phenomena are so inherently nonlinear that they can never
be linearized. There are nonlinear terms in the pendulum’s radial and
tangential equations of motion (7.8), which we write here in terms of the
dimensionless time, τ , defined in eq. (7.10) and with the nonlinear terms
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underlined:

T = mg

[(
dθ(τ )

dτ

)2

+ cos θ(τ )

]
, (7.33a)

and
d2θ(τ )

dτ 2
+ sin θ(τ ) = 0. (7.33b)

Now let us assume that the angle of the pendulum can be written as

θ(τ ) = θ0f (τ ), (7.34)

where f (τ ) is a function whose absolute value is such that |f (τ )| ≤ 1. Then

θ0 = max |θ(τ )|. (7.35)

We can identify θ0 as the amplitude of the pendulum’s motion that
indicates the magnitude of the pendulum’s swings. We want to define
just how large that amplitude may be, whether it is small or large, which
means that we must provide a reference against which we can meaningfully
measure small and large. We do that by referring back to the Taylor series
for the trigonometric functions given in Section 4.1.2, now written in terms
of the amplitude θ0:

sin θ0 = θ0 − θ
3
0

3! +
θ5

0

5! −
θ7

0

7! + · · ·
∼= θ0 +O(θ3

0 ) (7.36a)

cos θ0 = 1− θ
2
0

2! +
θ4

0

4! −
θ6

0

6! + · · ·
∼= 1+O(θ2

0 ) (7.36b)

In writing these results we have again (see the last two paragraphs of Valid?

Section 4.1.2) assumed that the angle θ0, expressed in radians, is a num-
ber that is small compared to 1. In eqs. (7.36) we have also introduced the
order notation, O(θ2

0 ), that indicates the lowest exponent on the remaining,
unwritten terms in the series that represent the difference between a linear
approximation, the first term in each series, and the function being approx-
imated. The question of how many terms need to be retained in these series
is answered simply: What level of precision is required of the model we are
building? It is easy enough to show (see Problems 7.11–7.14) that we can
approximate the sine and cosine functions by their linear approximations
for angles |θ0| ≤ π/6 = 30◦ as follows:

sin θ0
∼= θ0 percent error ∼ 5% (7.37a)

cos θ0
∼= 1 percent error ∼ 15% (7.37b)
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With the approximation (7.37a), we can immediately linearize the
tangential equation of motion (7.33b):

d2θ(τ )

dτ 2
+ θ(τ ) = 0. (7.38)

A similar linearization of the cosine in the radial equation of motion (7.33a)
produces the result that

T = mg

[(
dθ(τ )

dτ

)2

+ 1

]
, (7.39)

which still retains a nonlinear term. However, in the light of eq. (7.34) and
the discussion of Section 7.1.4, it is easy enough to show (see Problem 7.15)
that the values of θ(τ ) and its derivatives with respect to τ are all of the same
order of magnitude or size. The underlined quadratic term in eq. (7.39) can
then be neglected compared to 1, so the linearized model of the pendulum
produces a constant tension:

T ∼= mg . (7.40)

We close this discussion of linearization by noting that notwithstanding
the argument just made about the derivatives of θ(τ ) with respect to τ , we
cannot assume that θ(t ) and its derivatives with respect to the real time,
t , are of the same order of magnitude. That assumption is valid only with
respect to the dimensionless forms discussed.

Problem 7.11. How many terms of the series (7.36a) are needed to
calculate sin θ0 to a precision of 1% for angles |θ0| ≤
π/6 = 30◦? To 2%? To 5%?

Problem 7.12. How many terms of the series (7.36b) are needed
to calculate cos θ0 to a precision of 1% for angles
|θ0| ≤ π/6 = 30◦? To 2%? To 5%?

Problem 7.13. Explain any differences between the answers to
Problems 7.11 and 7.12.

Problem 7.14. How does a computer produce values of the “trig”
and other transcendental functions?

Problem 7.15. Show (and explain) why the derivatives of eq. (7.34)
with respect to τ are all of the same magnitude or size.
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7.2.2 The Differential Equation md 2x /dt 2 + kx = 0

How do we determine the function θ(τ ) that satisfies and thus solves How?

eq. (7.38)? First, to be more general, let us return that equation to its
dimensional form,

ml
d2θ(t )

dt 2
+mgθ(t ) = 0. (7.41)

To be still more general, we write eq. (7.41) in the equivalent form (see
Problem 7.16) of

m
d2x(t )

dt 2
+ kx(t ) = 0, (7.42)

which is the classical equation for a simple spring-mass oscillator, which we
will begin to discuss in some detail in Section 7.3 and with great generality in
Chapter 8. In the meantime, we can safely refer to m as the (constant) mass
of the oscillator, k as its (constant) stiffness, and x(t ) as its displacement
(or movement or deflection). It is clear that if we can solve eq. (7.42) we
obtain a solution to eq. (7.38).

Equation (7.42) is a homogeneous, second-order, linear differential equa-
tion that has constant coefficients, k and m. Guided by the discussion of
Section 5.2.2, we assume a solution to eq. (7.42) in the form

x(t ) = Ceλt , (7.43)

which when substituted into eq. (7.42) leads to the characteristic equation
that defines the constant, λ,

mλ2 + k = 0. (7.44)

Equation (7.44) has two solutions,

λ1,2 = ±
√−1

√
k

m
≡ ±jω0, (7.45)

where we have now noted that j = √−1 and have redefined the scaling
factor, ω0, as

ω0 ≡
√

k

m
(7.46)

Since eq. (7.42) is of second order, we expect that it will have two
solutions, each corresponding to the two values of λ defined by eq. (7.45):

x(t ) = C1ejω0t + C2e−jω0t . (7.47)

These general forms of the homogeneous solutions are quite valid. How-
ever, guided by the “most remarkable formula” presented in Section 4.9,
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we can (see Problem 7.17) rewrite the solution (7.47) in terms of the
standard trigonometric functions:

x(t ) = B1 cosω0t + B2 sinω0t , (7.48)

where B1 and B2 are two arbitrary constants that are entirely equivalent to
the constants in eq. (7.47). It is also easily verified by direct substitution
(Problem 7.18) that eq. (7.48) is a solution to eq. (7.42).

Equation (7.48) is called the homogeneous solution of eq. (7.42) because it
solves a differential equation that has no forcing function on its right-hand
side. Equation (7.48) is also called the transient solution because it actuallyUse?

represents the initial conditions that initiate the pendulum’s motion. Thus,
if x(0) = x0 and dx(0)/dt = ẋ 0, it is easily shown (Problem 7.19) that

x(t ) = x0 cosω0t + ẋ 0

ω0
sinω0t , (7.49)

As we will further describe in the next section, the motion described by
eq. (7.49) is periodic and would go on indefinitely for an ideal pendulum
that experiences no damping. However, for a damped pendulum, this
initial motion will be damped out, which is why it is called the “transient
solution.”

Problem 7.16. What is the effective spring stiffness, k, for the
simple pendulum? Are its dimensions proper, for the
pendulum itself and as a stiffness?

Problem 7.17. Use “the most remarkable formula” in mathematics
to show how eq. (7.47) becomes eq. (7.48).

Problem 7.18. Substitute the solution (7.48) into eq. (7.42) and
confirm that it is a correct solution.

Problem 7.19. Determine the constants, B1 and B2, in eq. (7.48) for
the initial conditions x(0) = x0 and dx(0)/dt = ẋ 0.

7.2.3 The Linear Model

Returning now to the linear model of the pendulum, we can straightfor-Use?

wardly cast eq. (7.49) into the dimensionless notation of the pendulum
(see Problem 7.20):

θ(τ ) = θ0 cos τ + .
θ0 sin τ , (7.50)
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where we can now identify θ0 and
.
θ0 as, respectively, the initial location

and the initial speed with which the pendulum is set in motion. These
initial parameters are entirely independent, so that they can be specified
separately. Thus, to drop a pendulum from a fixed angle, θ0, but with no
initial speed, the transient solution would be

θ(τ ) = θ0 cos τ . (7.51)

On the other hand, to launch the pendulum from the origin, θ0 = 0, with
a specified initial speed,

.
θ0, the transient solution would take the form

θ(τ ) = .
θ0 sin τ . (7.52)

Since we are solving a linear problem, superposition applies (see
Section 1.3.4), and the general solution (7.50) is simply the sum of the
two solutions (7.51) and (7.52).

In Section 4.9 we noted that the elementary trigonometric functions are
periodic: the functions sin τ and cos τ have the same value when their
arguments are increased by 2π , that is,

cos(τ + 2π) = cos τ and sin(τ + 2π) = sin τ . (7.53)

In physical time t , then, the value of θ(t ) repeats at time intervals such that

t = 2πn

ω0
= nT0, n = 1, 2, 3, . . . . (7.54)

Hence, T0 is (again) the period of the pendulum motion and ω0 its cir-
cular frequency, measured in radians per unit time. We can also define a
frequency f0 with units of (time)−1 or hertz (Hz), named after a famous
acoustician, Heinrich Rudolf Hertz (1857–1894):

f0 = 1

T0
= ω0

2π
(7.55)

One last observation about the results just described: the period of the
vibrating pendulum, T0, depends only on the physical properties of the
pendulum and not at all on the amplitude of the oscillation. The uncoup-
ling of the amplitude from the period, like the applicability of the principle
of superposition, is another defining characteristic of linear models of
vibration.

Problem 7.20. Show how the solution (7.49) becomes the solu-
tion (7.50) for initial conditions θ(0) = θ0 and
dθ(0)/dt = .

θ0.
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7.3 The Spring-Mass Oscillator–I: Physical

Interpretations

We now explore some physical interpretations of the linear model justWhy?

How? developed. The more general form, eq. (7.42), is an equation of equilib-
rium, which means that its physical dimensions are of force or F = ML/T2.
Since x(t ) is the oscillator displacement and has the dimensions of length
or L, the stiffness, k, must have the dimensions of force per unit length
or F/L. Thus, the equation (7.42) represents a balance of an inertial force
with a spring force. Further, our everyday experience with springs con-
firms Hooke’s law, which states that a spring exerts a restoring force that
is directly proportional to the amount that it is stretched or compressed,
that is,

Fspring = kx(t ). (7.56)

Note that the sign of the spring force changes with the sign of the displace-
ment, so that extending a spring (x > 0) produces a positive, tensile force
that tends to return it to its original length, while compressing the spring
(x < 0) produces a negative, compressive force that also tends to restore
the spring to its original length.

How does this work for the pendulum? A slight rewriting of eq. (7.41)
shows that

m
d2θ(t )

dt 2
+
[

k = mg

l

]
θ(t ) = 0. (7.57)

Thus, we see that the pull of gravity acts just like a spring, exerting a larger
restoring force as the pendulum angle increases.

Another reflection of this behavior can be seen if we examine the energy
of the spring-mass oscillator. If we multiply eq. (7.42) by the oscillator
speed, dx(t )/dt , we find

[
m

d2x(t )

dt 2
+ kx(t )

]
dx(t )

dt
= 0. (7.58)

Now, both terms in eq. (7.58) are total derivatives. Therefore, we can
integrate this equation to obtain

1

2
m

(
dx(t )

dt

)2

+ 1

2
k(x(t ))2 = E0. (7.59)

Thus, by inverting the process by which we identified the pendulum’s total
energy in Section 7.1.5, we have here derived the energy of the spring-mass
oscillator and showed that it, too, is the sum of the kinetic and potential
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energies. Further, as we know from the pendulum and can easily demon-
strate (see Problems 7.21–7.23) with the solution (7.49), the energy moves
back and forth from being entirely kinetic energy when the pendulum is
at its perigee to a position when it is entirely potential energy, that is, at
its maximum amplitude. This means that each of the two elements in Predict?

Use?the spring-mass system acts as an energy-storage element : the spring stores
(and releases) potential energy, while the mass stores (and gives up) kinetic
energy.

Problem 7.21. Calculate the kinetic energy of a spring-mass oscil-
lator released from a rest position x(0) = x0 initially
and at time intervals, T0/4, T0/2, 3T0/4, and T0.

Problem 7.22. Calculate the potential energy of a spring-mass oscil-
lator released from a rest position x(0) = x0 initially
and at time intervals, T0/4, T0/2, 3T0/4, and T0.

Problem 7.23. What fractions of the total energy are the kin-
etic and potential energies at time intervals, T0/4,
T0/2, 3T0/4, and T0? (Hint : Use the results of
Problems 7.21 and 7.22!)

7.4 Stability of a Two-Mass Pendulum

In our brief review of the elementary transcendental functions (in
Section 4.9), we saw that trigonometric and hyperbolic functions are closely
related. The arithmetic difference between the two is traceable to the j
factor in the argument of the exponential function. Their behaviors dif-
fer as well, with the trigonometric functions showing bounded periodicity
and the hyperbolic functions showing exponential growth or decay. The Why?

change from periodic to exponential arithmetic behavior typically signals
a change in physical behavior from a stable, bounded configuration to
unstable, unbounded exponential growth. The transition from bounded
trigonometric behavior to unbounded exponential behavior occurs when
a model parameter passes through a critical value. We will illustrate this
transitional behavior for a two-mass pendulum.

Consider the vertically-arrayed dumbbell shown in Figure 7.3. If set
absolutely still in a perfectly vertical alignment, it conceivably could remain
in that precarious position. However, in the normal course of events, if
the dumbbell is let go and starts to swing, we would expect that its final
position—and its behavior in arriving at that position—will depend very
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Figure 7.3 A schematic of a
dumbbell, a two-mass
pendulum. Its initial state has a
mass, m1 on top, and a mass,
m2 on the bottom. The stability
of this state is dependent on the
relative magnitudes of the two
masses.

much on the relative sizes of the masses, m1 and m2. If m1<m2, we
would expect that the dumbbell would oscillate just like a simple pen-
dulum, around its present position. On the other hand, if m1>m2, we
would expect that the two-mass pendulum would swing downward until
the masses settled into an inverted position, with m2 at the top and m1 at
the bottom. Thus, this is a stability problem, with the operative questionPredict?

being: Is the configuration shown in Figure 7.3 a stable configuration?
To answer this question we must model the free vibration of the two-How?

mass pendulum.We can build that model by extending the elementary
pendulum model: First, we write the total energy for the dumbbell
and then we differentiate that total energy to derive the equation of
motion. Note that while there are two separate masses, only one degree
of freedom, the angle, θ(t ), is needed to specify the positions of both
masses. Thus, taking our cue from eq. (7.20), the kinetic energy for the
dumbbell is

KE2 = 1

2
(m1 +m2)

(
l
dθ(t )

dt

)2

. (7.60)
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The potential energy of the swinging mass, PE, is measured with respect
to a datum through the origin of the coordinates (x = 0, y = 0) in another
familiar calculation:

PE2 = m1gy1(t )−m2gy2(t ) = −(m1 −m2)gl(1− cos θ(t )). (7.61)

For a linear two-mass pendulum model, we can approximate the potential
energy as

PE2
∼= −1

2
(m1 −m2)gl(θ(t ))2. (7.62)

The total energy, E2(t ), is found by adding eqs. (7.60) and (7.62):

E2(t ) = 1

2
(m1 +m2)

(
l
dθ(t )

dt

)2

− 1

2
(m1 −m2)gl (θ(t ))2 . (7.63)

Then we can derive the equation of motion for the dumbbell by differ-
entiating eq. (7.63) with respect to time,

dE2(t )

dt
=
[
(m1 +m2)l

2 dθ2(t )

dt 2
− (m1 −m2)glθ(t )

](
dθ(t )

dt

)
, (7.64)

from which it follows that

(m1 +m2)l
dθ2(t )

dt 2
− (m1 −m2)gθ(t ) = 0,

or
dθ2(t )

dt 2
+ (m2 −m1)

(m1 +m2)

(g

l

)
θ(t ) = 0. (7.65)

Equation (7.65) is the same homogeneous, second-order, linear dif-
ferential equation with constant coefficients that we solved before [i.e.,
eq. (7.42)] with the solution

θ(t ) = Ceλt , (7.66)

which leads to a characteristic equation for the constant, λ, that has two
solutions,

λ1,2 = ±j

√
(m2 −m1)

(m1 +m2)

(g

l

)
. (7.67)

Now the most interesting feature of eq. (7.67) is that the very nature of Verified?

the roots,λ1,2, changes according to the relative size of the two masses. For
the case m2 > m1, the roots are purely imaginary, so the dumbbell will
simply oscillate around its initial position (i.e., m1 at the top and m2 at the
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t

m2<m1

m2>m1

m2>>m1

m2=m1

� m2<<m1

Figure 7.4 A sketch of the solutions to the
linearized equations of motion of a dumbbell,
a two-mass pendulum. These solutions are
periodic when the initial configuration is
stable (m2 > m1) and are exponential when
the initial state is unstable (m2 < m1). The
case m2 =m1 is a critical point that defines
the border between the stable and unstable
states.

bottom). On the other hand, if m2 < m1, the roots (7.67) become two real
roots:

λ1,2 = ±j

√
−(m1 −m2)

(m1 +m2)

(g

l

)
= ∓

√
(m1 −m2)

(m1 +m2)

(g

l

)
. (7.68)

Equation (7.68) mean that the two homogeneous solutions for m2 < m1

are exponentials, one decaying to zero, the other growing without bound.
Thus, the case m2 < m1 represents an instance where the initial configur-
ation is unstable, a finding that accords with our intuition of what would
happen if we tried to stand a top-heavy dumbbell on its lighter end. Fig-
ure 7.4 shows a plot of schematic solutions for both real and imaginary
values of the roots, for both the periodic and exponential solutions. The
case m2 = m1 is a critical point that defines the border between a stable
initial configuration (m2 > m1) and an unstable initial state (m2 < m1).

Thus, we have seen here an instance where changes in the parameters
produce changes in the mathematical behavior of the model, which is a
signal that different physical behavior is to be expected. An often-askedUse?

question in engineering and the physical sciences is whether a system’s
parameters support its bounded oscillation about its equilibrium position,
or whether its instability is possible or even certain. We will see an instance
of the former in a nonlinear biological model in Section 7.6.
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7.5 The Freely-Vibrating Pendulum–III: The

Nonlinear Model

We now return to the classical single pendulum to illustrate one of the most Why?

elegant solutions in applied mathematics and to show how an approxima-
tion to the nonlinear results can be obtained with some of the series
introduced in Chapter 4. We begin with eq. (7.22) for the total energy of How?

the pendulum, while also noting that the energy is a constant (eq. (7.24))
for this conservative system:

1

2

(
dθ(τ )

dτ

)2

+ (1− cos θ(τ )) = E0

mgl
. (7.69)

Now for a pendulum released from the resting position, θ(0) = θ0, we can
determine (see Problem 7.24) the constant, E0, so that

(
dθ(τ )

dτ

)2

+ 2(1− cos θ(τ )) = 2(1− cos θ0). (7.70)

With the aid of a standard double-angle formula, we can rewrite
eq. (7.70) as (

dθ(τ )

dτ

)2

= 4 sin2 θ0

2
− 4 sin2 θ(τ )

2
. (7.71)

We now introduce a constant,

p ≡ sin
θ0

2
, (7.72)

and a change of variable to a new angle, φ,

sin
θ(τ )

2
≡ sin

θ0

2
sin φ = p sin φ, (7.73)

so that the energy equation (7.71) can be written as

(
dθ(τ )

dτ

)2

= 4p2 cos2 φ. (7.74)

Equation (7.74) does look neater and more elegant, but it has two dep-
endent variables, θ and φ. However, we can differentiate eq. (7.73) to
show that

1

2
cos

θ

2
dθ = p cosφ dφ,
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or

dθ = 2p
cosφ

cos θ2
dφ = 2p

cosφ√
1− p2 sin2 φ

dφ, (7.75)

which allows us to rewrite eq. (7.74) as

dτ = − dφ√
1− p2 sin2 φ

, (7.76)

with a minus sign [for the square root of eq. (7.74)] that arises because
θ(τ ) is measured positive counter-clockwise from the pendulum’s perigee.
Thus, for θ(0) = θ0 > 0, we have both dθ/dτ and dφ/dτ < 0.

Equation (7.76) can be formally integrated, but we must exercise care in
choosing the limits. The period of the nonlinear model, T̃0, differs from the
linear period, T0 = 2π/ω0. In terms of the dimensionless time variable,
τ = tω0, an integration over the first quarter of the period means that
0 ≤ τ ≤ (T̃0ω0/4 = π T̃0/2T0), and that π/2 ≤ φ ≤ 0:

T̃0

T0
= − 2

π

0∫
π/2

dφ√
1− p2 sin2 φ

= 2

π

π/2∫
0

dφ√
1− p2 sin2 φ

. (7.77)

The integral on the right-hand side of eq. (7.77) is an elliptic integral (of
the first kind), for which there are published tables of numerical values as a
function of p. Thus, the tabulated values of the integral make it possible to
calculate how the nonlinear period varies with p—which means how the
nonlinear period, T̃0, varies with the initial amplitude of the pendulum,
θ0 (recall the definition of p in eq. 7.73)). This confirms what we said
when we discussed the experimental data presented in Section 7.1.1: The
period of oscillation of the pendulum does depend on its initial position
or amplitude.

What happens with the linear model? The answer is that for very small
values of θ0, and thus of p, we make the same kind of approximation of the
radicand in eq. (7.77) that we did in eqs. (7.37a–b): We say 1−p2 sin2 φ ∼= 1,
in which case we recover the linear result, T̃0

∼= T0.
The reduction to the linear case also suggests that we apply the binomial

expansion (4.24) to the radicand in eq. (7.77) for small values of p:

T̃0

T0
= 2

π

π/2∫
0

dφ√
1− p2 sin2 φ

∼= 2

π

π/2∫
0

(1+ p2

2
sin2 φ)dφ, (7.78)
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which, after integration and another application of the small-angle
approximation, yields

T̃0

T0

∼= 1+ p2

4
= 1+ 1

4
sin2 θ0

2
∼= 1+ θ

2
0

16
. (7.79)

Once again we see here the dependence of the period on the amplitude,
and the results predicted from eq. (7.79) can be compared both to the exact
result given in eq. (7.77) and to the experimental data given in Table 7.1
(see Problems 7.25 and 7.26).

Problem 7.24. Determine the value of the constant energy, E0, in
eq. (7.69) for (a) a pendulum released from a resting
position θ(0) = θ0, and (b) for a pendulum given an
initial speed

.
θ0 while hanging vertically (θ(0) = 0).

Problem 7.25. Complete the integration of the last form of eq. (7.78)
and confirm the first equality in eq. (7.79).

Problem 7.26. Use tabulated values of the elliptical integral of the
first kind (eq. (7.77)) to determine the values of T̃0/T0

for the values of θ0 used in Table 7.1.
Problem 7.27. Compare and contrast the values found in the

last column of Table 7.1 with the results found in
Problem 7.26.

7.6 Modeling the Population Growth of

Coupled Species

In Section 5.6 we introduced the logistic growth model that shows how, in a
nonlinear fashion, the exponential growth of a single population or species
can be bounded. What happens if there are two species that interact with Why?

each other? The Lotka-Volterra model of population growth provides an
answer to this question, and in so doing it uses many of the modeling ideas
developed above for the pendulum. The two-species model is of particular
interest to biologists, with one species typically playing host to the second,
parasitic population.

The bounding effect of the single-population logistic model is produced How?

by the inclusion of the term −λ2N 2 in the population balance equation
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(see eqs. (5.48) and (5.50)). This term describes the inhibition of the popu-
lation’s growth. We start with two populations, the host (or prey) H (t )Assume?

and the parasite (or predator) P(t ), and we assume that the growth of each
population is inhibited by the size of the other population. Thus, in the
place of eq. (5.50) for a single population, we start with

dH (t )

dt
= λHH (t )

(
1− P(t )

Pe

)
, (7.80a)

and

dP(t )

dt
= −λPP(t )

(
1− H (t )

He

)
. (7.80b)

The positive constants, λH and λP, represent the uninhibited growth and
decay rates, respectively, of the host and parasite populations, and each
has physical dimensions of (time)−1. The population values, He and Pe,
correspond to the equilibrium values of the two populations, the point at
which the population rates, dH/dt and dP/dt , both vanish and the two
populations are in static equilibrium with each other.

Equation (7.80a) shows that the parasite population reduces the growthVerified?

rate of the host population, which is what parasites or predators do.
On the other hand, the presence of the hosts in eq. (7.80b) slows the
decline of the parasite population (for H (t )<He), since there are fewer
sources of sustenance when there are fewer hosts or prey. Thus, eqs.
(7.80a–b)—which are variously known as the Lotka-Volterra equations
or the predator-prey or parasite-host equations—do seem to be intuitively
correct.

Further, while eqs. (7.80) resemble the single-population logistical
model (5.50), there is one interesting and important distinction. While
the single-population model (5.50) incorporated a maximum population
Nmax, the predator-prey model refers to equilibrium populations that
may be exceeded, which means that there could be a change in the arith-
metic signs of the right-hand sides of eqs. (7.80a–b). For example, when
H (t ) > He, the parasite decay rate turns into a growth rate. This suggests
that the population sizes might oscillate or vibrate about their equilibrium
sizes.

Equations (7.80) are coupled, nonlinear, ordinary differential equations.
They are coupled because the dependent variables, H (t ) and P(t ), appear
in both equations, and nonlinear because of the products of H (t ) and
P(t ). No explicit solutions for H (t ) and P(t ) are known to exist for these
nonlinear equations. However, as with the pendulum, we can use other
means to extract a great deal of information.
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7.6.1 Qualitative Solution for the Nonlinear Model

While we cannot explicitly integrate eqs. (7.80a–b), we can divide one by How?

the other and obtain a form that is independent of the independent variable
t :

dH

dP
= −λH

λP

(1− P/Pe)H

(1−H/He)P
. (7.81)

If the fractions in eq. (7.81) are cleared and the populations are rendered
dimensionless with respect to their equilibrium populations, we find

1

λH

(
1

H/He
− 1

)
d(H/He)+ 1

λH

(
1

P/Pe
− 1

)
d(P/Pe) = 0. (7.82)

Equation (7.82) can be straightforwardly integrated to yield

1

λH

(
ln

H

He
− H

He

)
+ 1

λP

(
ln

P

Pe
− P

Pe

)
= constant. (7.83)

When plotted on the set of axes comprising the (H , P) space, eq. (7.83)
represents a family of closed curves “centered” around the equilibrium
point (He, Pe), as shown in Figure 7.5. Each member of the family of curves
corresponds to a different value of the constant in eq. (7.83), with the area
enclosed by the curve increasing with the value of the constant. We also

0 20 40 60 80 100

P

H0

20

30

Pe = 10

He= 25

Figure 7.5 Three curves that illustrate the family of
curves represented by eq. (7.83). Here λH = 1.00 per
unit time, λP = 0.50 per unit time, Pe = 10 and
He = 25. Note the equilibrium point, as well as the
horizontal and vertical flat spots discussed
previously, as well as the elliptical nature of the
curves closest to the equilibrium point (Pielou,
1969).
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note flat spots at abscissa values of H =He that correspond to the vanishing
of the slope dP/dH (or where dP/dt = 0 in eq. (7.80b)). Similarly, we note
vertical tangents (“vertical flat spots”) at ordinate values of P = Pe that
correspond to the slope dP/dH becoming infinite (or where dH/dt = 0
in eq. (7.80a)). More importantly, for given values of the constant, we can
trace the magnitudes of the two populations and can thus examine how
predator and prey or parasite and host interact.

7.6.2 Oscillatory Solution for the Linearized Model

A further examination of the curves in Figure 7.5 also shows that thoseHow?

nearest the equilibrium point are nearly elliptical in shape. Thus, let us
write the values of H (t ) and P(t ) in the forms

H

He
= 1+ h

He
and

P

Pe
= 1+ p

Pe
. (7.84)

Let us further assume that the values of h(t ) and p(t ) are small comparedAssume?

to their respective equilibrium values of the populations:

h

He
� 1 and

p

Pe
� 1. (7.85)

Equations (7.84) and (7.85) provide a basis for generating binomial expan-
sions of the natural logarithms in eq. (7.83). If that’s done, the result is that
to O(h, p)3, eq. (7.83) becomes (see Problem 7.28):

1

λH

(
h

He

)2

+ 1

λP

(
p

Pe

)2

= constant. (7.86)

Equation (7.86) is clearly that of an ellipse and so confirms the observation
made above about the shapes of the closed curves near equilibrium.

What happens when we substitute eq. (7.84) into our original model
equations (7.80a–b)? We would find that

dh(t )

dt
= −λHHe

(
1+ h(t )

He

)(
p(t )

Pe

)
, (7.87a)

and
dp(t )

dt
= λPPe

(
1+ p(t )

Pe

)(
h(t )

He

)
. (7.87b)

If we now linearize eqs. (7.87a–b) to keep only linear terms on their right-
hand sides, we get

dh(t )

dt
∼= −λHHe

(
p(t )

Pe

)
, (7.88a)
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and
dp(t )

dt
∼= λPPe

(
h(t )

He

)
. (7.88b)

We can now eliminate either of the functions h(t ) or p(t ) between
eqs. (7.88a–b) to show that they each satisfy the same equation (see
Problems 7.29 and 7.30):

d2h(t )

dt 2
+ λHλPh(t ) = 0, (7.89a)

and
d2p(t )

dt 2
+ λHλPp(t ) = 0. (7.89b)

Equations (7.89a–b) are the equations of simple harmonic oscillators!
Thus, h(t ) or p(t ) represent small oscillations about the equilibrium posi-
tion, a stable result. In fact, it is not hard to show (see Problems 7.31–7.33)
that a solution to eqs. (7.88) or (7.89) is

p(t ) = p0 cos
√
λHλPt

h(t ) = −p0

√
λH

λP

(
He

Pe

)
sin
√
λHλPt .

(7.90)

where p0 is a constant that will be determined by the initial conditions.
In terms of the original host and parasite populations, the solution (7.90)
appears as

P(t ) = Pe

(
1+ p0

Pe
cos

√
λHλPt

)

H (t ) = He

(
1− p0

Pe

√
λH

λP
sin
√
λHλPt

)
.

(7.91)

This result makes explicit the oscillation of the host and parasite popula- Verified?

tions around the equilibrium point. Moreover, the oscillations for both host
and parasite occur at exactly the same natural frequency, T0 = 2π/

√
λHλP.

It is worth noting that a potential instability phenomenon is embedded Predict?

Use?in the solutions (7.90) and (7.91). Recall that the uninhibited growth and
decay rates, λH and λP, were assumed to be positive constants. If one
of them were negative, that is, if the host population was declining or
the parasite population growing, the outcome would be far different (see
Problems 7.34 and 35).

We close this discussion by noting that we have gained a great deal
of information about host-parasite population systems without having
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obtained explicit solutions. We used both energy and small perturba-
tion formulations to derive considerable qualitative understanding of the
behavior of prey and predator. These qualitative approaches allowed us to
identify the equilibrium point, the family of closed-curve solutions, the
elliptical shapes of those curves in the neighborhood of equilibrium, and
the periodic vibration of the two populations about equilibrium.

Problem 7.28. Use eqs. (7.84) and (7.85) to generate binomial
expansions of the natural logarithms in eq. (7.83)
and to confirm eq. (7.86) to O(h, p)3.

Problem 7.29. Substitute p(t ) from eq. (7.88a) into eq. (7.88b) to
obtain eq. (7.89a).

Problem 7.30. Substitute h(t ) from eq. (7.88b) into eq. (7.88a) to
obtain eq. (7.89b).

Problem 7.31. Guided by the general solution (7.48), determine the
solutions to eqs. (7.88) or (7.89) that satisfy initial
conditions p(0) = p0 and dp(0)/dt = 0.

Problem 7.32. What initial conditions are satisfied by h(t ) in the
solution of Problem 7.31? Could they have been
specified differently or separately?

Problem 7.33. What are the initial values of the populations H (t )
and P(t ) corresponding to the solution (7.90)?

Problem 7.34. What does it mean for the rate λP to become a
negative constant?

Problem 7.35. Show how the solution (7.90) changes if λP is a
negative constant.

7.7 Summary

In this chapter we have used the classical pendulum to show a mathematical
model was derived, how it was grounded in and verified against experi-
mental results, and how we could obtain qualitative information about its
behavior. We also demonstrated the behavior of linear oscillators in several
domains, and drew some distinctions between the behaviors exhibited by
linear and nonlinear models. In so doing, we used concepts of linearity,
dimensional consistency, scaling, and some basic ideas of second-order
differential equations.

In terms of the behavior of the pendulum itself, we have shown how
the period of the linear model depends only on the pendulum’s properties
and not on its amplitude of vibration, as is the case for nonlinear models
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wherein the amplitude is large. We also developed an elegant exact solution
for the period of a pendulum and related it to the linear model. We also
showed, for both the two-mass pendulum and a predator-prey population
system, how the period of the vibrating system is sensitive to properties of
that system—especially for the two-mass pendulum, for which instability
occurs for certain combinations of masses.
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7.9 Problems

7.36. Use eq. (7.79) to determine the maximum angle, θ0, such that
the ratio, T̃0/T0, does not exceed 1.005.

7.37. (a) Determine which variables affect the period of free vibration
of the conical pendulum shown below from the accompanying
table of data.

(b) Determine which variables affect the period of free vibration of
the conical pendulum shown below using dimensional analysis.

Period of Revolution (sec)

θ m l1= 1 m l2= 3 m

θ1 m1 2.09 2.09 2.10 3.45 3.40 3.48
m2 2.07 2.08 2.08 3.46 3.44 3.44

θ2 m1 1.95 1.98 1.94 3.37 3.40 3.38
m2 1.96 1.93 1.95 3.36 3.38 3.35

θ3 m1 1.87 1.87 1.88 3.24 3.29 3.27
m2 1.86 1.85 1.87 3.22 3.25 3.21

m

� �

R
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7.38. Confirm the answer to Problem 7.37 (b) by deriving the equations
of motion for a conical pendulum.

7.39. A uniform rod or stick is supported by and swings from a pivot at
one end. The mass of this swinging rod is distributed over its length
(unlike that of the classical pendulum introduced in Section 7.1).
Use dimensional analysis to determine how the period of this
pendulum depends on its mass per unit length, m, its length, l ,
and the gravitational constant, g .

7.40. Determine the period of the uniform rod or stick of Problem 7.39
by deriving its linearized (small angle) equation of motion. (Hints:
Use Newton’s laws of rotational motion, which then provide an ana-
logy to the simple pendulum. The second moment of the rotational
inertia is given as I = ml2/3.)

7.41. Show that the total energy of the uniform rod or stick of
Problem 7.40 is conserved. (Hints: The kinetic energy is given as
I (dθ/dt )2/2. The potential energy is the pendulum’s weight multi-
plied by the height of its mass center with respect to an appropriate
datum.)

7.42. (a) Determine the rate at which energy is dissipated for a damped
planar pendulum when the damping force is proportional to
the square of the pendulum’s speed.

(b) Confirm that the answer to part (a) is dimensionally correct.
7.43. (a) Write the equation for the total energy of an undamped linear

spring-mass system in terms of its maximum displacement, A,
and the spring stiffness, k.

(b) Confirm that the answer to part (a) is dimensionally correct.
7.44. Kepler’s third law of planetary motion can be written as an equation

for the square of a planet’s period of motion around the sun,

T 2 = 4π2a3

GMs
,

where a is the semi-major axis of the elliptical planetary orbit, Ms

is the mass of the sun, and G is the universal gravitational con-
stant. Further, Newton’s first law states that the force of gravitation
between the sun and a planet can be written as

F = GMs(mass of planet)

(distance from planet to sun)2 .

(a) Starting with this form of Kepler’s third law, find an equation
for the frequency in the form ω = ω(a, G, Ms).

(b) Determine the appropriate approximation of Newton’s gravita-
tional law to obtain Kepler’s third law.
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7.45. Explain whether or not energy is conserved in planetary motion.
(Hint : The gravitational potential energy is GMs(mass of
planet)/(distance from planet to sun).)

7.46. Show from eq. (7.8b) that the mass of a simple pendulum attains its
maximum speed when θ = 0◦. Is this physically reasonable?

7.47. Show that the result just obtained in Problem 7.46 is valid for both
the linear and nonlinear models of the planar pendulum.

7.48. Would you expect to see energy conserved in laboratory experiments
with pendulums? If not, how would the dissipation of energy make
itself known?


