PLC控制步进电机实验

一、实验目的:

1、熟悉西门子S7-200系列编程控制器的硬件结构及外部接线方法

2、熟悉PLC编程软件STEP7的编程环境,掌握软件的使用方法。

3、掌握S7-200PLC的子程序功能的编程方法。

二、实验原理:

在PLC实际工程项目中,有线性化编程模式和结构化编程模式。线性化编程模式是将所 有指令全部放在主程序(MAIN)中,全部功能均在主程序中执行,结构复杂,易于产生逻辑 错误。机构化编程模式将控制系统的主线放在主程序(MAIN)中,不同类型的控制功能分别 放在不同的子程序(SBR)或中断程序(INT)中,主程序决定何时调用子程序从而执行相应 的控制功能,从而区别对待不同运行条件下的执行过程。PLC结构化编程模式可以合理地利 用子程序简化程序逻辑,优化程序结构。

本实验给出一个仿真控制步进电机正反转的示例,采用主程序-子程序的结构模式。主 程序中利用正反转控制开关选择调用子程序,两个子程序分别控制步进电机的正转和反转。 需要更改步进电机的正反转运行功能时,只需要更改相应子程序即可。

1、子程序指令

1) 子程序指令

子程序调用指令(CALL)将程序控制权交给子程序 SBR_N。调用子程序时可以带参数也可以不带参数。子程序执行完成后,控制权返回到调用子程序的指令的下一条指令。

子程序条件返回指令(CRET)根据它前面的逻辑决定是否终止子程序。

要添加一个子程序可以在命令菜单中选择: Edit > Insert >Subroutine。

在主程序中,可以嵌套调用子程序(在子程序中调用子程序),最多嵌套8层。在中断 服务程序中,不能嵌套调用子程序。

2) 带参数调用子程序

子程序可以包含要传递的参数。参数在子程序的局部变量表中定义。参数必须有变量名 (最多 23 个字符)、变量类型和数据类型。一个子程序最多可以传递 16 个参数。

局部变量表中的变量类型区定义变量是传入子程序(IN)、传入和传出子程序(IN_OUT) 或者传出子程序(OUT)。要加入一个参数,把光标放到要加入的变量类型区(IN、IN_OUT、 OUT)。点击鼠标右键可以得到一个菜单选择。选择插入选项,然后选择下一行选项。这样就 出现了另一个所选类型的参数项。

图3-1 子程序调用梯形图举例

	表	3 - 1	语句表说明
--	---	-------	-------

步序	指令	器件号	说明
1	LD	10.0	可以在 LAD 和 FBD 中正确显示:

2	CALL	SBR0, I0.1, VB10, I1.0, & VB100, *AC1, VD200	LD = LD = LD CALL & VB1	I0.0 L60.0 I0.1 L63.7 L60.0 SBR0, L63.7, VB10, I1.0, 00, * AC1, VD200
---	------	---	---	---

2、移位和循环指令

1) 右移和左移指令

移位指令将输入值 IN 右移或左移 N 位,并将结果装载到输出 0UT 中。移位指令对移出 的位自动补零。

2) 循环右移和循环左移指令

循环移位指令将输入值 IN 循环右移或者循环左移 N 位,并将输出结果装载到 0UT 中。 循环移位是圆形的。

移位指令梯形图举例:

图 3-2 移位和循环指令梯形图举例 表 3-2 语句表说明

图 3-3 移位和循环指令说明

3)寄存器位移位指令

寄存器位移位 SHRB 指令将 DATA 端的数值移位进入移位寄存器。S_BIT 端指定移位寄存器的最低有效位。N 指定移位寄存器的长度及移位方向(正移位= N, 负移位= -N)。SHRB 指令移出的每位被置于溢出内存位(SM1.1)。

SHRB 指令的功能是当使能 EN 有效时,如 N>0,则在每个 EN 的上升沿,将输入数据 DATA

的状态移入移位寄存器的最低位 S_BIT;如 N<0,则在每个 EN 的上升沿,将输入数据 DATA 的状态移入移位寄存器的最高位 (S_BIT+N-1)。移位寄存器的其他位按照 N 制定的方向,依次串行移位。

图 3-4 寄存器位移位指令及其时序图

图 3-4 给出一个寄存器位移位指令的示例及其时序图。N=4,则 V100.0 是移位寄存器的 最低位,V100.3 是移位寄存器的最高位,原始状态为"0101"。当 I0.2 第一次出现正跳变 的时候,SHRB 指令将 I0.3 的数值(此时为 1)移入 V100.0,V100.1 的数值移入 V100.2, V100.2 的数值移入 V100.3,V100.3 的数值移入 SM1.1(溢出丢失),移位后寄存器的状态为 "1011";当 I0.2 第二次出现正跳变的时候,SHRB 指令将 I0.3 的数值(此时为0)移入 V100.0, V100.1 的数值移入 V100.2,V100.2 的数值移入 V100.3,V100.3 的数值移入 SM1.1(溢出丢 失),移位后寄存器的状态为"0110";依此类推,SHRB 指令持续移位。

三、PLC硬件电气连接:

本次实验需要用到 DC24V 直流电源、PLC 的数字量输入(DI)、数字量输出(DO)以 及外部的拨动开关和步进电机。按照表 3-3~表 3-5 给出的对应关系连接实验箱面板上的可 编程控制器主机区和基本指令编程练习区,连接线时需要注意的事项参见实验一中的要求。

序号	电源模块	PLC 输入	PLC 输出	练习区	步进电机	说明
		端子	端子	端子		
1	+24V		1L			Q0.0~Q0.3
2	+24V			V+		外部输入公共端
3	+24V				V+	步进电机
4	COM	1M				IO. 0~IO. 1
5	COM			М		外部输出公共端
6	COM				М	步进电机

表 3-3 DC24V 信号接线表

表 3-4 输入信号接线表

序号	PLC 输入端子	练习区端子	说明
1	10.0	I0.0	步进电机 SD 启动开关
2	I0. 1	I0.1	步进电机正反转选择开关

表 3-5 输出信号接线表

序号	PLC 输出端子	练习区端子	说明
1	Q0. 0	Q0. 0	步进电机 A 相绕组
2	Q0. 1	Q0.1	步进电机 B 相绕组
3	Q0. 2	Q0. 2	步进电机C相绕组
4	Q0. 3	Q0.3	步进电机 D 相绕组

四、PLC实验程序:

实验三利用子程序实现步进电机的正转(逆时针)和反转(顺时针),利用定时器和移位指令模拟步进电机的运转。在主程序MAIN中设定了两个子程序,分别是步进电机正转子程序SBR_0和步进电机反转子程序SBR_1,利用拨动开关I0.1选择调用哪个子程序,从而决定步进电机是正转还是反转。

子程序SBR_0的程序如下:

阿络 1 LDN CALL	IO.1 SBR_0:SBR0
阿络 2 LD CALL	I0.1 SBR_1:SBR1

 FM3A 1

 LD
 I0.0

 AN
 M0.0

 TON
 T37, 10

 FM3A 2
 ID

 LD
 T37

 =
 M0.0

 FM3A 3
 ID

 TON
 T38, 11

 AN
 T38

 =
 M1.0

网络 4	
LD	M1.0
0	MO.2
=	M10.0

网络 5	
LD	M10.1
TON	T39, 10
AN	T39
=	MO.2

阿络6 LD M0.0 SHRB M10.0, M10.1, -4

网络7 LD M10.1 = Q0.0

子程序SBR 1的程序如下:

网络 8 LD M10.2 Q0.1 = 网络 9 LD M10.3 = Q0.2 网络 10 LD M10.4Q0.3 = 网络 1 I0.0 M0.0 T37, <mark>10</mark> LD AN TON 网络 2 LD T37 MOLO = 网络 3 LD I0.0 T38, <mark>11</mark> TON AN T38 = M1.0 网络 4 LD O M1.0 MO.2 M10.0 = 网络 5 M10.4 LD T39, 10 T39 TON ΑN MO.2 = 网络 6 MO.0 LD SHRB M10.0, M10.1, +4

LD M10.1 = Q0.0

网络 7

阿络8 LD M10.2 = Q0.1 **阿络9** LD M10.3 = Q0.2

阿络10 LD M10.4 = Q0.3

五、实验步骤:

1、 打开计算机中的西门子 S7-200 系列 PLC 编程软件 "STEP7 Micro/WIN32", 逐条输入实 验程序,使用梯形图或语句表均可,通过编译程序检查有无错误;

2、通过专用的 PC/PPI 电缆连接计算机与 PLC 主机,设置好通讯参数,确认 PLC 与计算机已

经连接;

3、连接好外部电气接线,检查无误后打开实验箱总电源开关;

4、将 PLC 主机上的 STOP/RUN 开关拨到 STOP 位置,在 "STEP7 Micro/WIN32"软件中将所编 好的程序下载到 PLC 主机内,然后再将可编程控制器主机上的 STOP/RUN 开关拨到 RUN 位置, 运行指示灯点亮,表明程序开始运行,有关的指示灯将显示运行结果。

5、打开"STEP7 Micro/WIN32"软件中的"在线监视"功能,查看软件的运行状态;同时观察 PLC 主机上的输入、输出指示灯的状态;

6、开关步进电机区的拨动开关 SD,观察 PLC 主机的输入指示灯、输出指示灯以及步进电机 的转到是否符合程序预期结果;

7、开关练习区的拨动开关 I0.1,观察 PLC 主机的输入指示灯、输出指示灯以及步进电机的转到是否符合程序预期结果;

8、实验结束,关闭实验箱电源、关闭计算机,拔掉并整理好电气连接线。

六、思考题:

1、本实验模拟运行的步进电机是几相电机?运行相序是几拍的?

2、本实验中移位指令SHRB的功能是什么? 指令中N端的数字在不同子程序分别是"+4"和"-4", 分别起到什么作用?

实验四 异步电动机电气连接线路实验

一、实验目的:

1、熟悉三相异步电动机正反转控制的原理及电气线路的连接方法。

2、通过对三相异步电动机正反转控制线路的接线,掌握由电路原理图接成实际操作电路的方法。

3、熟悉三相异步电动机电气回路中的低压电气元件。

4、掌握三相异步电动机"星"型连接方法和"三角"型连接方法。

二、实验原理:

(1) 三相异步电动机正反转电气控制原理

三相异步电动机是机电控制领域典型的常用设备,掌握它的电气控制回路原理以及实际 电气连接线路对于工程应用是十分必要的。三相异步电动机的运行有多种方式,有简单的按 钮起停控制,也有复杂一些的接触器连锁控制。

图4-1是三相异步电动机的正反转控制电气回路原理图,左半部分是电气主回路(一次回路)原理图,右半部分是电气控制回路(二次回路)原理图。表4-1给出电气主回路中各个电气元件的名称及作用,表4-2给出电气控制回路中各个电气元件的名称及作用。在原理图中文字符号相同的是同一个电气元件,不同的图形符号代表该元件的不同功能部分。如热继电器FR1的热元件连接在主回路中,图形符号如图4-1中左半部分所示;而同一个热继电器FR1的内部开关则连接在控制回路中,图形符合如图4-1中右半部分所示。

图 4-1 三相异步电动机正反转电气控制原理图

表 4-1 三相异步电动机止反转电气主回路	·元件	组成
-----------------------	-----	----

电气元件符号 名称		作用	所在实验箱
U、V、₩ 三相电源		为系统供电三相 220V	三相可调交流电源
FU1、FU2、FU3	熔断器	主回路短路保护	MRDT10
KM1、KM2	接触器	闭合、断开主回路	MRDT10
FR1	热继电器	过载保护	MRDT10
М	三相异步电动机	带动外部负载	DJ16

表 4-2 三相异步电动机正反转电气控制回路元件组成

电气元件	名称	作用	初始状态	所在实验箱
FU4	熔断器	控制回路短路保护	正常	MRDT10
SB1	正转启动按钮	电动机正转启动	断开	MRDT10
SB2	反转启动按钮	电动机反转启动	断开	MRDT10
SB3	停止按钮	电动机停止	闭合	MRDT10
FR1	热继电器开关	过载时断开电气回路	闭合	MRDT10
KM1 线圈	接触器 KM1 线圈	通电时闭合 KM1 的主触点	不通电	MRDT10
KM2 线圈	接触器 KM2 线圈	通电时闭合 KM1 的主触点	不通电	MRDT10
KM1 常开触点	接触器 KM1 常开触点	自锁功能, 按钮 SB1 松开后	断开	MRDT10
		保持 KM1 线圈通电		
KM2 常开触点	接触器 KM2 常开触点	自锁功能, 按钮 SB2 松开后	断开	MRDT10
		保持 KM2 线圈通电		
KM1 常闭触点	接触器 KM1 常闭触点	互锁功能,保证接触器 KM1	闭合	MRDT10
		与 KM2 不会同时通电		
KM2 常闭触点	接触器 KM2 常闭触点	互锁功能,保证接触器 KM1	闭合	MRDT10
		与 KM2 不会同时通电		

(2) 三相异步电动机绕组连接方式

三相异步电动机主要有2种定子绕组连接方式,分别是星型连接方式和三角形连接方式,

其原理图如图 4-2 所示。

图 4-2 三相异步电动机绕组连接方式

电动机内部有三组绕组, 六个接线端, 当把三个绕组的一端连在一起, 而另一端分别接 电源, 连成一个 Y 型, 就是星型接法; 这时候电源两相之间的电流是相电流, 比线电流小根 3 倍; 如果把三组绕组的首尾相连, 然后三个首尾相连处接电源, 连成一个三角形, 就是三 角形接法; 这时候电源两相之间的电流就是线电流, 比相电流大根 3 倍; 通常的星-三角启 动方式目的就是减小启动电流, 而通常电机启动的瞬间电流比较大, 所以一般先以 Y 型启动, 再转换为三角形。

究竟采用哪种接法,需要看电机铭牌,这和绕组有关系。如果标有 380V 或者 400V, 后面画一个三角 就三角型接法,画 Y 就星型接法;大部分电机默认三角形接法,也有一些 是 380V 下以 Y 型运行的。

本实验中所使用的 DJ16 电动机是 220V/△连接方式,即三相定子绕组之间连接成三角 形连接方式,绕组线电流为 220V。因此,在启动电动机之前,务必使用调压器将三相可调 电源的输出电压调节为 220V,否则会绕坏电动机绕组。

三、实验注意事项(必读)

实验中开启及关闭电源都在控制屏上操作。开启三相交流电源的步骤为:

 1)开启电源前。要检查控制屏下面"直流电机电源"的"电枢电源"开关(右下角) 及"励磁电源"开关(左下角)都须在"关"断的位置。控制屏左侧端面上安装的调压器旋 钮必须在零位,即必须将它向逆时针方向旋转到底。

2)检查无误后开启"电源总开关"(空气开关,在实验台左侧面),"停止"按钮指示灯亮(红色),表示实验装置的进线接到电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。

3) 按下"启动"按钮,"启动"按钮指示灯亮(绿色),"三相可调交流电源"的三 只发光二极管发光,表示三相可调交流电源输出插孔U1、V1、W1及N端有固定线电压380V、 相电压220V输出;同时三相可调交流电源的输出插孔U、V、W及N上即可输出交流电源, 输出电压的大小可由调压器旋钮调节(输出线电压为0-450V)。控制屏上方有一只指针式 交流电压表。电压表下面的"电压指示切换"开关拨向"三相电网输入"时,电压表显示三 相电网进线的线电压;当"电压指示切换"开关拨向"三相调压输出"时,它指示三相四线 制插孔U、V、W和N输出端的线电压。

4)实验中如果需要改接线路,必须按下"停止"按钮以切断交流电源,保证实验操作 安全。实验完毕,还需关断"电源总开关",并将控制屏左侧端面上安装的调压器旋钮调回 到零位。将"直流电机电源"的"电枢电源"开关及"励磁电源"开关拨回到"关"断位置。 5) 实验中遇到紧急情况时,立即按下实验台上面红色的"急停"按钮可以迅速切断总 电源。

四、实验步骤:

1、仔细研读三相异步电动机的正反转控制原理图,掌握其工作原理;

2、按照图 4-1 连接实验设备电气线路;按照图 4-2,将电动机连接为三角形连接;

3、检查线路连接,确保没有错误;

4、将实验台左侧面的电压调节手轮逆时针旋转到零位;

5、开启"电源总开关",按下实验台上面的绿色"启动"按钮,实验台通电,指示灯点亮; 6、顺时针调节实验台左侧的调压手轮,实验台"电压指示"表头开始升高,将指针调节到 220V;

7、按下实验箱 MRDT10 上面的 SB1 按钮,观察三相异步电动机的运行情况,确认其转向;

8、按下实验箱 MRDT10 上面的 SB3 按钮,观察三相异步电动机的运行情况;

9、按下实验箱 MRDT10 上面的 SB2 按钮,观察三相异步电动机的运行情况,确认其转向; 10、按下实验箱 MRDT10 上面的 SB3 按钮,观察三相异步电动机的运行情况;

11、实验结束,按下"停止"按钮,切断电动机电源;将实验台左侧面的电压调节手轮逆时 针旋转到零位;切断 "电源总开关"。

12、拆除实验连接线,分类存放整齐。

五、思考题:

1、图 4-1 中, FU4 起到什么作用?

2、图 4-1 中,起到电气保护作用的元件有哪些?分别起到何种作用?

3、实验中使用的 DJ16 电动机是 220V/△连接方式,如果连接成星型连接,有什么后果?如果三相可调电源的输出电压 380V 直接接入电动机,有什么后果?

4、仿照图 4-1,设计一个三相异步电动机的启动-自锁-停止控制电路,把原理图绘制在实验报告中。

实验五 PLC控制三相异步电动机正反转实验(设计型)

一、实验目的:

1、掌握PLC控制三相异步电动机正反转的工作原理及电气线路的连接方法。

2、掌握PLC模块功能以及PLC控制回路的硬件连接方法。

3、掌握电动机正反转控制的PLC程序设计方法。

二、实验原理:

本实验采用西门子S7-200系列PLC作为控制器,按照教师给出的系统方案来控制异步电动机的运行;由学生自行设计PLC程序,并自行连接系统电气回路,最终实现既定目标。

(1) 系统方案

本实验的PLC程序采用结构化编程模式,即主程序-子程序结构,详细的程序结构见图5-1 的系统流程图。

图 5-1 PLC 程序结构流程图

由流程图所示,需要在主程序中设置判断多位开关当前位置的语句,根据条件进入不同 的子程序:手动子程序或自动子程序。在手动子程序中,PLC根据手动按钮的当前状态输出 相应的响应,分别驱动电动机实现正转、反转或停止。在自动子程序中,电动机将在PLC程 序的自动控制下,实现正转-停止-反转的循环动作,每个电动机的动作之间具有一定的时间 间隔。

(2) 主回路电气连接

PLC控制三相异步电动机的电气回路原理图如图5-2所示,其中主回路部分与实验四完全相同,其功能见表4-1。因为控制器不同,所以控制回路的电气元件及连接方式有所不同。

图 5-2 三相异步电动机电气回路原理图

(3) 控制回路电气连接

PLC 作为控制器时,异步电动机控制回路相比普通二次回路简单了许多,只需要将中间 继电器的控制触点连接至主接触器的线圈即可。PLC 采集外部输入(开关、按钮等元件)的 当前状态,由内部程序的运行结果决定 PLC 输出(中间继电器等)的状态,而中间继电器触 点的状态决定主接触器是否通电,电动机是否运转。

PLC 的输入、输出硬件电气连接示意图如图 5-3 所示。

图 5-3 PLC 输入输出电气连接示意图

PLC 外部输入输出电气元件及内部编程元件关系表见表 5-1 所示。

编程元件	电气元件	名称	作用	初始状态	所在实验箱			
10.0	SB6	按钮	手动程序-正转	断开	MRDT13			
			自动程序-系统启动					
I0.1	SB7	按钮	手动程序反转	断开	MRDT13			
			自动程序无					

表 4-2	二相异步	电动机止反转	电气控制	凹路兀忤组成
-------	------	--------	------	--------

I0. 2	SB8	按钮	手动程序-停止	断开	MRDT13
			自动程序-系统停止		
I0. 3	FR1	热继电器的	电动机主回路过载保护	闭合	MRDT10
		常闭触点			
I0.4	SA4-1	多位开关的1位	选择手动子程序	断开	MRDT13
I0. 5	SA4-2	多位开关的2位	选择自动子程序	断开	MRDT13
Q0. 0	KM11	中间继电器的	控制主接触器 KM1	不得电	MRDT13
		KM11 线圈	接通或断开		
Q0. 1	KM21	中间继电器的	控制主接触器 KM2	不得电	MRDT13
		KM21 线圈	接通或断开		
	24V	直流电源	给 PLC 的输入、输出接	正常	MRDT10
			口供电		

四、实验步骤:

1、仔细研读三相异步电动机的 PLC 正反转控制原理图,掌握其工作原理;

2、按照图 5-1 连接实验设备电气线路;按照图 5-2,连接 PLC 输入输出电气线路;

3、检查线路连接,确保没有错误;

4、将实验台左侧面的电压调节手轮逆时针旋转到零位;

5、开启"电源总开关",按下实验台上面的绿色"启动"按钮,实验台通电,指示灯点亮;

6、按照系统流程图自行设计 PLC 程序;

7、连接 PLC 和编程器,程序编译无误后下载到 PLC 中;

8、将多位开关 SA4 旋转到"0"位;

9、顺时针调节实验台左侧的调压手轮,实验台"电压指示"表头开始升高,将指针调节到 220V;

10、将多位开关旋转到"1"位,按下实验箱 MRDT13 上的 SB6 按钮,观察三相异步电动机的运行情况,确认其转向;按下实验箱 MRDT13 上的 SB8 按钮,观察三相异步电动机的运行情况;按下实验箱 MRDT13 上的 SB7 按钮,观察三相异步电动机的运行情况,确认其转向;

11、在运行的同时,通过编程元件的"在线监视"功能查看 PLC 程序的运行情况;

12、将多位开关旋转到"2"位,按下实验箱 MRDT13 上的 SB6 按钮,观察三相异步电动机的运行情况,确认其转向;按下实验箱 MRDT13 上的 SB8 按钮,观察三相异步电动机的运行情况;按下实验箱 MRDT13 上的 SB7 按钮,观察三相异步电动机的运行情况,确认其转向;

13、在运行的同时,通过编程元件的"在线监视"功能查看 PLC 程序的运行情况;14、实验结束,按下"停止"按钮,切断电动机电源;将实验台左侧面的电压调节手轮逆时针旋转到零位;切断 "电源总开关"。

15、拆除实验连接线,分类存放整齐。

五、思考题:

1、在手动子程序中,如何保证主接触器 KM1 和 KM2 不会同时结题从而短路?

2、解释你所编写的程序都包含什么编程元件,分别起到何种作用?