
5
Exponential Growth and

Decay

This chapter is devoted to a discussion of exponential models that share
a common characteristic: The rate of change of a variable, whether posi-
tive (as it grows) or negative (as it decays), is directly proportional to the
immediate value of that variable. More often than not, the rate of change
is a time rate of change that is proportional to the variable’s instantaneous
value. Similar exponential decays also occur spatially, that is, with respect to
a spatial coordinate. Here, behaviors decay over some distance so as to have
little or no effect at distances sufficiently far from the initiating behavior. We
will see that exponential models are ubiquitous and have many applications,
including in physics, finance, and population and resource predictions.

5.1 How Do Things Get So Out of Hand?

As we have just indicated, the primary characteristic of exponential growth
or decay of a population is the dependence of the rate of growth of the
population on its size at any instant. Thus, if a population is large, its
growth rate will be proportionately large, and its continuing growth will
accelerate with its increasing size. As we will soon see, this kind of growth
exhibits itself in nice, smooth curves whose ordinate values increase very
rapidly in relatively short periods of time. One application area where Why?
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118 Chapter 5 Exponential Growth and Decay

this behavior is often modeled is the field of population studies. Indeed,
much has been made in recent years of the dangers of overpopulation and
of the related resource and environmental issues. In fact, with regard to
the principles of modeling outlined in Section 1.2, common sense would
indicate in this instance that we have a pretty good idea of what we are
looking for, what we know, and what we want to know.

Consider the two population projections shown in Figures 5.1 and 5.2.
Even though they are now somewhat dated, both curves project very rapid
increases in the world’s population in relatively short times. The first curve
(Figured 5.1) reflects both historical data for the years prior to 1960 and
a projection from a 1960 world population estimate of 3 billion people
growing at a rate of 2% per year. The world population was quite small until
1700, but it has been growing rapidly since the end of the 19th century.
However, even though the projections past 1960 are at a modest rate ofFind?

2% per year, we should wonder about the validity of the steepness of the
projection, especially after the year 2100.

If we were to extend the projection shown in Figure 5.1 for another
700 or 800 years, we would obtain the results shown in Figure 5.2. The
assumed annual growth rate is still 2% and the population is still measured
in billions. However, the time scale has been expanded by a factor of two
and the population projections are now measured in millions of billions!
While these population projections are almost certainly unrealistic, the
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Figure 5.1 A historical view (solid line, for
1700–1960) and a projection (dashed line, for
1960–2165) of the world’s population.
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Figure 5.2 A longer projection, for 1950–2700, of
the world’s population, annotated to show the
amount space that each person would be
accorded were the projections to become reality.

projection curve clearly illustrates the nature of unrestrained exponential
growth: The bigger it is, the faster it grows.

We also emphasize (again, as in Section 3.5.2) the importance of scal-
ing when examining exponential growth. Consider the magnitudes of the
numbers involved. For example, at a 2% annual growth rate, the world
population grows from 3 billion in 1960 to 5,630,000 billion in 2692 (cf.
Figure 5.2). What does it mean to have

5,630,000 billion people

or

5,630,000,000,000,000 people

or

5.63× 1015 people

on earth in the year 2692? Is there room for all of these people? Could we
even count this many people in a census? (And if you think that this is not a
meaningful question or issue, there were vigorous debates within the U.S.
Congress about the role of statistical sampling in the 2000 census—and
they were talking about counting “only” some 285 million Americans!)
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Let’s try to answer the “room” issue first, that is, is there space enough onWhat?

earth for more than five million billion people? The total surface area of the
earth is approximately 5.10 × 108 km2 (∼ 5.49 × 1015 ft2), of which 72%
is water. Assuming that people cannot stand on water, the net “standingGiven?

area” is approximately 1.43 × 108 km2 (∼ 1.54× 1015 ft2). If each person
were given just 1 square foot of personal standing space, people would have
to be stacked more than three deep in order to accommodate everyone!

How long would it take to physically count all of the people on earth in
2692? Suppose we could tally the population at a rate of 1000 people perAssume?

Predict? second. Then it would take

5.63× 1015 people

1000 people/s
= 5.63× 1012 s.

This seems like a lot of counting time. In fact, it easily shown that this
simple calculation suggests that it would take almost 200,000 years to count
the population growth that occurred in (only!) 800 years at a 2% annual
growth rate.

We have presented the above numbers in part because they are patently
absurd, to show just how things get out of hand. These numbers showValid?

how simplistic calculations with exponentials can lead to results that are
arithmetically correct yet fail the test of basic credibility. We also note
again the effect of scale in displaying such results. The ordinate scales of
Figures 5.1 and 5.2 are linear and represent, respectively, 100 billion people
per 1.50 in of graph and 2,000,000 billion per in. To express the projected
population of 5.63× 1015 people on the same ordinate scale of Figure 5.1,
we would need a piece of paper that is 85,000 in long (you do the math!).
It is also readily shown (see, for example, Problems 5.38 and 5.40) that
exponential curves do not always portray such dramatic results.

Remember, therefore, that a change in scale does not, by itself, gener-
ate or dissipate true exponential behavior. Scale changes add or disguise
perspective on the underlying mathematics. What is more important isImprove?

that exponential behavior can express other kinds of response, illustrated
in Figure 5.3, both of which occur when the proportionality factor is neg-
ative.Figure 5.3(a) shows a classic decay or dissipation curve in which an
initial value decays to zero, while Figure 5.3(b) shows how some vari-
able grows evermore slowly, asymptotically, to a limiting value as time
becomes infinite. We will see both of these behaviors in Section 5.4, for
example, when we describe the charging and discharging of a capacitor in
a very elementary electrical circuit. Thus, after we introduce the necessary
mathematics, we should also expect to see mathematical behavior that is



5.1 How Do Things Get So Out of Hand? 121

R
es

p
o

n
se

R
es

p
o

n
se

Variable Variable

Typical decay
curve

Limiting
value

Asymptotic
behavior

(a) (b)

Figure 5.3 Illustrations of the kinds of exponential behavior
that result when the constant of proportionality is less than zero
(negative): (a) classic decay from a given initial value; and
(b) asymptotic growth toward a limiting value or asymptote as
time becomes indefinitely large.

more complicated and more interesting than simple, unrestrained expo-
nential growth. We will then see that such exponential behavior is an
important part of very practical and useful modeling in many disciplines.
The foregoing discussion should, therefore, be taken as a cautionary “word
to the wise” about some of the dangers in exponential modeling, not as a
reason to dismiss or ignore it.

Problem 5.1. If you were asked to conduct a population study, what
would you be looking for, what would be known, and
what would you want to know?

Problem 5.2. What sort of assumptions would you make if you were
asked to conduct a population study? On what basis
could those assumptions be justified?

Problem 5.3. What factors might restrain or otherwise influence the
unrestrained growth seen in Figures 5.1 and 5.2?

Problem 5.4. Determine the radius of the earth in both meters and
feet from the surface areas given in Section 5.1. Are
these values consistent with the conversion factors
given in Table 2.3?

Problem 5.5. Confirm that it would take almost two hundred thou-
sand years to count a population of 5.63 million billion
people at a rate of 1000 people/s.
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5.2 Exponential Functions and Their

Differential Equations

In this section we first describe some of the arithmetic that underlies all of
the numbers and curves given in Section 5.1. We follow that with a very
brief primer on the first-order differential equation from whence derives
the exponential function. This primer is intended to serve as a reminder
of—not a substitute for—comparable introductory material in differential
equations.

5.2.1 Calculating and Displaying Exponential

Functions

The exponential behavior discussed in Section 5.1 can be put in mathema-
tical terms as follows. Let N (t ) be the number or population of a collection
of objects, and let t be the independent variable on which N depends and
with which it changes. For most of our applications, t will be associated with
time, but that is a result of the models we exhibit, not due to any underlying
mathematical requirement. As we indicated in Section 5.1, exponential
growth results when the rate of growth is proportional to a population or
number. If we introduce a constant of proportionality, λ, then exponential
growth occurs when

dN (t )

dt
= λN (t ). (5.1)

We see from eq. (5.1) that the constant of proportionalityλ can be written as

λ = dN/N

dt
. (5.2)

Thus, λ represents the fractional change dN/N of the population per unit
change of the independent variable, dt. The dimensions of λ are seen to be

[λ] = 1

[t ] = [t
−1]. (5.3)

If the independent variable, t , is a measure of time, then the dimensions of
λ are 1/time.

Equation (5.1) is a first-order differential equation that is linear in the
dependent variable N (t ) and has constant coefficients. As we show in the
next section, eq. (5.1) has a solution that can be written as

N (t ) = N0eλt , (5.4)
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where the constant N0 is an arbitrary constant whose value remains to be
determined. The dimensions (and units) of N0 must be the same as those
of N (t ). Further, the number e is the base of the natural logarithm. It has
an approximate value e ∼= 2.71828. Since e0= 1, it also follows that the
number N0 must be the initial value of the population, that is, the number
of objects whose change we are modeling at t = 0, when the model “starts.”
Note, too, that N (t ) grows in time if λ is positive, much like the curves in
Figures 5.1 and 5.2, and that it decreases in magnitude or decays if λ < 0,
as does Figure 5.3(a).

Since e is the base of natural logarithms, we can take the (natural)
logarithm of both sides of eq. (5.4) to show that

λt = ln N (t )− ln N0 = ln (N (t )/N0) . (5.5)

Equation (5.5) tells us that if we want to find a time, tn , when the number
N (tn) = nN0, that is, when the population size is a specified multiple of
its initial value, all we need to do is calculate

tn = ln n

λ
. (5.6)

People frequently ask how long it takes something to double in size, in
which case the answer is the doubling time, t2, determined from eq. (5.6)
with n = 2:

t2 = ln 2

λ
∼= 0.693

λ
. (5.7)

One immediate application of eq. (5.7) is to investment: Money grows Why?

as it earns interest. Suppose that we want to know how long it would take
Find?to double an amount of money with continuously compounded interest.

We determine that by interpreting λ in terms of percentage, P , in which
case P = 100λ. Then eq. (5.7) becomes

t2 = 69.3

P
. (5.8)

The approximate time it would take to double some money as a function
of different percentage growth rates P is shown in Table 5.1.

There are two other interesting properties of exponential growth. The
first is the inversion of the doubling time that occurs when we calculate the
half-life of a population. That is, suppose we want to know how long it
takes for a population that started at N0 to decrease to a value of N0/2. In
this case, λ would represent a (negative) decay rate, and from eq. (5.6) we
would get a formula for the half life t1/2 that is formally identical to eq. (5.7)
or eq. (5.8). Thus, we need only change the column headings in Table 5.1
to “Annual Decay (P < 0, %)” and “Half-Life (t1/2, years),” respectively, to
obtain the variation of half-life as a function of decay rate.
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Table 5.1 The time it takes to double one’s
money, measured in years, as a function of
continuously compounded growth rates,
measured in percentages.

Annual
Growth (P , %)

Approximate Doubling
Time (t2, years)

1 69.3
2 34.6
5 13.9

10 6.93
20 3.46

The second interesting property is this. The time, tn , it takes for a popula-
tion, N (t ), to grow by a constant factor, n, remains unchanged throughout
the growth. Thus, from time t = 0 to t = t2, the population doubles;
from t = t2 to t = 2t2, the population doubles again; and so on. Thus, we
obtain the results shown in Table 5.2.

Finally, for this section, some remarks on the display of exponential
functions are now in order. We saw in Section 5.1 that exponential growth
can lead to some horrifically large numbers. However, in the same way that
great strengths and great weaknesses are often intertwined, it is similarly
the case that the logarithms of exponential growth provide the means of
graphical (and representational) salvation. If we look back at eq. (5.5),
we see that one representation of exponential behavior can be expressed in
the form:

ln N (t ) = λt + ln N0. (5.9)

Equation (5.7) suggests that a semi-logarithmic plot of ln N (t ) against λt
(plus a constant) would produce results in which the ordinate values are

Table 5.2 The growth of the
exponential function as gauged by
multiples of the doubling time.

Time (units of t2) Population (N (t ))

t = 0
= t2

= 2t2

= 3t2

= 10t2

= nt2

N = N0 = 20N0

= 2N0 = 21N0

= 4N0 = 22N0

= 8N0 = 23N0

= 1024N0 = 210N0

= 2nN0
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Figure 5.4 Population projections for the
period 1960–2400 based on the data of
Figures 5.1 and 5.2, presented herein in a
semi-logarithmic plot. What had previously
been displayed as a set of steeply rising
exponential curves is now seen as a
relatively benign straight line with ordinate
values in particular that are much more
manageable.

more commensurate with those of the abscissa. In fact, in such a semi-
logarithmic plot, eq. (5.9) represents a straight line of slope λ and with
intercept ln N0. In Figure 5.4 we show such a linear “semi-log” using the
projected data of Figures 5.1 and 5.2.

Problem 5.6. Confirm by differentiating eq. (5.4) that the N (t ) given
therein satisfies eq. (5.1).

Problem 5.7. How would the projections of Figures 5.1 and 5.2
change if the growth rate were, respectively, 1% per
year and 3% per year?

Problem 5.8. What annual growth rate would be needed to double
one’s money in seven years?
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5.2.2 The First-Order Differential Equation

dN /dt − λN = 0
There is another interesting property of exponential behavior that has been
present but to which we have not paid much attention in our discussion
thus far. This special property is the fact that there is only one arbitrary
constant in the basic exponential model [see the discussion immediately
after eq. (5.4)]. Why is that so? There is only one constant because, as we
will now demonstrate, the exponential function (5.4) is the solution to a
first-order differential equation, that is, a differential equation in which the
highest-order derivative is of first order. The single arbitrary constant arises
from the fact that a first-order differential equation needs to be integrated
just once to obtain a solution.

Consider the differential equation governing population growth set out
in eq. (5.1):

dN (t )

dt
− λN (t ) = 0. (5.10)

This differential equation has constant coefficients, that is, the multipliers
of both N (t ) and its derivative are constants, namely, λ and 1, respectively.
Equation (5.10) can also be written in the form

dN (t )

N (t )
− λdt = 0, (5.11)

which can be integrated in exactly the same way that the Naperian logarithm
was defined in Section 4.9 and then inverted to yield the solution (see
Problem 5.9):

N (t ) = Ceλt . (5.12)

We can clearly identify C as the initial population by setting t = 0 in
eq. (5.12). Equally clearly, we can identify that initial value in the notation
introduced in eq. (5.4): C = N0.

The initial value C need not be determined at the time t = 0. We could
specify a starting condition that at some time t0, N (t0) = N0. Equation
(5.12) then dictates that

N (t0) = N0 = Ceλt0 ,

which means in turn that

C = N0e−λt0 . (5.13)

If we substitute this form of our constant of integration C into the solution
(5.12), we get

N (t ) = N0e−λt0eλt = N0eλ(t−t0). (5.14)
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This obviously defines a population that for λ > 0 is increasing through
N0 at t = t0, but that is less than N0 for t < t0.

Note that all of the foregoing manipulations are as valid for λ < 0 as
they are for λ > 0. The interpretations would obviously be different, since
we would be describing exponential decay (λ < 0) rather than exponential
growth (λ > 0), but the underlying mathematics is unchanged. However,
it is also true that the analysis to date is limited by the fact that our basic
differential equation (5.10) is a homogeneous equation, that is, there is no
forcing function on the right-hand side. When we discuss the charging of
a capacitor in a simple electrical circuit in Section 5.4, we will see that the
charge q(t ) in the capacitor in that circuit is described by an equation of
the form

dq(t )

dt
+ 1

RC
q(t ) = Vin(t ). (5.15)

Equation (5.15) looks very much like the differential equation (5.10) for
exponentials, except that it has a forcing function, Vin(t ), on the right-
hand side that forces or drives the change of the voltage in the circuit
being modeled. Further, the coefficient in eq. (5.15) is equivalent to taking
λ = −(1/RC) < 0 in eq. (5.10).

Problem 5.9. Verify that eq. (5.12) is the solution to the exponential
differential equation as given in eq. (5.10) by using
the result that∫

du

u
= ln u + constant.

Problem 5.10. Show that the solution (5.12) to the differential
equation (5.10) can also be found by assuming the
following trial solution for N (t ):

N (t ) = Ceαt .

Problem 5.11. Why is the proportionality constant in eq. (5.15)
equivalent to having λ < 0 in eq. (5.10)? What sort
of behavior would we then expect?

5.3 Radioactive Decay

We now want to model the decay of radioactive isotopes as exponential Why?

behavior. As physicists and chemists began to study radioactivity at the
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end of the 19th century, they found that the activity of radioactive isotopes
decreased with time at rates that varied with the material. When the emis-
sion of α and (primary) β particles was observed in the laboratory, it was
found that the number of particles collected over time was unaffected by
changes in pressure, temperature, chemical state, or the physical environ-
ment. Instead, the observed half-life of each isotope—the time it takes forFind?

the number of particles of the isotope to be reduced by half—was found to
be a characteristic of the material itself. Thus, once half-life is identified as
a material property, a measurement of a radioactive decay pattern can be
used to identify a material by its characteristic half-life.

In Figure 5.5 we show a generic, semi-logarithmic plot of the radioactiveGiven?

decay of an unspecified material. It strongly resembles Figure 5.4. In the
radioactive decay model, however, the proportionality constant is negative
(i.e., λ < 0). Further, in Figure 5.5, we have rendered the abscissa dimen-
sionless by measuring it in terms of an (unknown) half-life, t1/2. That is,
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Figure 5.5 A generic plot of the decay of
a radioactive isotope. Note that the data
is presented in a semi-logarithmic plot.
Note, too, that the abscissa has been
made dimensionless by measuring it in
terms of an (unknown) half-life, t1/2.
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time is measured here as a multiple of a parameter, t1/2, whose dimensions
(of time) are given but whose specific numerical value is not.

Decay rates are often used to characterize emitters as short-lived or long- Predict?

lived. For example, consider the decay of the element thorium (Th in the
atomic table of the elements). Thorium has a half-life of 16,500,000,000 yr,
which does seem like quite a long time! If that is indeed true, can we
calculate the effective decay constant, λ, and estimate how many thorium
atoms will decay in a year?

We can calculate λ by applying eq. (5.6) with n= 1/2 and How?

t1/2= 1.65× 1010 yr. Then the decay constant can be calculated as

λ = −0.693

t1/2
= −0.693

1.65× 1010 yr
= −4.20× 10−11 yr−1

= −4.20× 10−11 1

yr
× yr

365 day
× day

86,400 sec
(5.16)

= −1.33× 10−18 sec−1,

where reciprocal seconds are the units ordinarily used to express radioactive
decay constants. In view of the definition (5.2) of decay rate in terms of
fractional population change, eq. (5.16) suggests that only one thorium
atom in every (1.33 × 10−18)−1 = 7.51 × 1017 such atoms decays in one
second. Indeed, even in a year, only one of every 2.38×1010 thorium atoms
present initially will decay. Thus, it does seem that thorium can be safely
characterized as a long-lived emitter.

It is worth touching on two related points here. One is that the char-
acterization of a radioactive emitter as short- or long-lived seems, in the
above context, a straightforward and neutral piece of scientific reasoning.
However, similar calculations done in other contexts (e.g., the decay time Use?

for radioactive waste in a national storage facility for radioactive materi-
als from nuclear power plants, or the remediation time for gasses to fully
dissipate from a landfill) often turn these characterizations into political
(and emotional) debates that try to define the meaning of “short (or long)
enough for …”

The second point is a deeply philosophical one about the very under-
pinnings of the models of physics. What does it mean for a fraction of Valid?

a single isotope or atom to decay? Or, are the models really about aver-
ages calculated over a large number of particles? And, if that is the case,
how are such averages calculated? And, further, what is the meaning of Improve?

the various levels of models that are used to describe and predict these
behaviors?
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5.4 Charging and Discharging a Capacitor

We will now model the behavior of a very simple electrical circuit, incor-Why?

porating only two passive electrical elements, a capacitor defined by its
capacitance, C , and a resistor defined by its resistance, R. These two ele-
ments are depicted in Figure 5.6. The first step in our circuit modeling isAssume?

to identify a functional relationship for each element, called a constitutive
equation, which expresses its behavior in terms of the voltage drop across
the element and the current flowing through it.

The capacitor stores and discharges energy. This energy transfer occursHow?

as charge is transferred from one side plate or electrode to the other (viz.,
Figure 5.6(a)) and, in this process produces a voltage drop across the
capacitor given by:

[Va(t )− Vb(t )]C ≡ 	VC (t ) = q(t )

C
, (5.17)

where 	VC (t ) represents the voltage drop across the capacitor while the
charge, q(t ), flows through it. In SI units, C , the capacitance, is measured
in coulombs (of charge) per volt or farads.

Keep in mind that while we are used to talking about current flowing
through electrical devices in everyday life, here we are building our model
in terms of the charge, q(t ), whose first derivative in time is the current,

i(t ) ≡ dq(t )

dt
. (5.18)

(a)

(b)

C

R

Figure 5.6 Simple conceptual drawings of the
icons or symbols of two passive electrical
elements: (a) the capacitor, denoted by C ,
stores energy by storing charge and discharges
energy through the flow of charge (or current,
the time rate of change of charge); and (b) the
resistor, R , that allows charge or current to
flow, but that in so doing dissipates some of the
energy flow as wasted thermal energy.
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We will return to and amplify this point in Section 8.7 wherein we model
circuits more extensively and relate the electrical elements to analogous
mechanical elements.

The second passive element, the resistor depicted in Figure 5.6(b),
impedes or resists the flow of charge (or current) as the charge flows
through the element. The resistor thus dissipates energy, usually perceived
as wasted heat. The voltage drop across a resistor is usually expressed in
terms of voltage and current as Ohm’s law :

[Va(t )− Vb(t )]R ≡ 	VR(t ) = Ri(t ), (5.19)

where 	VR(t ) represents the voltage drop across the resistor while the
current, i(t ), flows through it. In SI units, R, the resistance, is measured in
volts per ampere or ohms. Since we are interested in expressing our current
model in terms of charge, we make use of eq. (5.18) to eliminate the current
from eq. (5.19) and rewrite Ohm’s law as:

	VR(t ) = R
dq(t )

dt
. (5.20)

5.4.1 A Capacitor Discharges

Having modeled our two circuit elements, we now model the simple elec-
trical circuit shown in Figure 5.7. That picture shows a resistor in series with
a capacitor, and with an (externally) applied voltage across the circuit’s two
“free” endpoints or nodes. Suppose first that no voltage is applied across
the free endpoints. In that case, it seems quite logical to stipulate that the
sum of the voltage drops across the capacitor and the resistor must simply
vanish because nothing is being put into the system, that is,

	VC (t )+	VR(t ) = 0. (5.21)

If we substitute eqs. (5.17) and (5.20) into eq. (5.21), we can replace its
voltage terms and express it entirely in terms of the charge q(t ) flowing
around this simple circuit:

dq(t )

dt
+ 1

RC
q(t ) = 0. (5.22)
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C

R

Vin(t)

Figure 5.7 A very simple electrical circuit that
connects a capacitor, C , in series with a resistor,
R , and an externally applied input voltage,
Vin(t ). Here we have directly connected the two
elements rather than showing their individual
nodes, but we have shown the two “free”
nodes or endpoints that normally would serve
as the terminals to which we would attach a
battery or some other voltage supply.

The resemblance between eqs. (5.22) and (5.10) is unmistakable, so itPredict?

follows immediately that the solution to eq. (5.22) can be written as [see
eq. (5.12)]

q(t ) = C1e−t/RC , (5.23)

where C1 is an arbitrary constant that can be taken as the initial charge:
C1= q0= q(t = 0). Equation (5.23) shows that the capacitor’s initial
charge, q0, left on its own, theoretically vanishes as t→∞. (In prac-
tice, the initial charge becomes so small that we can say it has vanished.)
Described in Section 5.1, this behavior was shown in Figure 5.3(a).

We also see from eq. (5.23) that the behavior of a simple RC circuitValid?

occurs in times that we can express and measure in terms of a characteristic
constant, namely, RC. This means, first of all, that the decay of the charge
is inversely proportional to both the resistance and the capacitance. It
is intuitively satisfying to see that the decay will be slowed if either the
capacitor is large, in which case it can hold a larger charge that will take
longer to dissipate, or if the resistance is large, in which case the discharge
of current through the resistor will be slowed down. Second, it is not
surprising that one widely used measure of the decay rate of such a circuit
is a time constant, τ , defined as:

τ = RC . (5.24)
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The time constant, τ , is the time it takes for an initial charge, q0, to be
reduced to the value, q0/e. With the definition (5.24), the RC circuit’s
governing equation can be written as

dq(t )

dt
+ 1

τ
q(t ) = 0. (5.25)

Note also that with the governing equation written this way, dimensional
consistency is much easier to discern and to verify.

Problem 5.12. Verify that each term in eq. (5.22) has the same
physical dimensions.

Problem 5.13. Confirm that eq. (5.23) is the correct solution to
eq. (5.22).

Problem 5.14. Use the definitions of resistance and capacitance
to verify that the product RC has the physical
dimensions of time.

5.4.2 A Capacitor Is Charged

Can we extend the foregoing circuit model to charge the capacitor? We can, Find?

by inserting a voltage source across the two free endpoints of the RC circuit
in Figure 5.7. (We should not confuse this with the familiar experience of
charging a dead car battery by connecting it with jumper cables to a good
battery because that charging results from a relatively rapid conversion of
electrical energy to chemical energy.) How do we incorporate a voltage
source to revise our circuit model?

There are two (at least) ways to answer this question. First, we would How?

extend the reasoning behind eq. (5.21) by simply adding to that equation
a term representing the input voltage Vin(t ) supplied by a battery or an
equivalent device:

	VC (t )+	VR(t ) = Vin(t ). (5.26)

Then, with the appropriate constitutive equations and the definition of the
circuit’s time constant, eq. (5.26) can be rewritten as

dq(t )

dt
+ 1

τ
q(t ) = Vin(t )

R
. (5.27)
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The differential equation (5.27) is called inhomogeneous in the terms of
mathematics because the voltage input makes its right-hand side take on a
non-zero value.

We can also demonstrate that eq. (5.27) is a correct model by applying aValid?

classical result of electrical circuit analysis, Kirchhoff ’s Voltage Law (KVL),
named after the German physicist Gustav Robert Kirchhoff (1824–1887).
Kirchhoff observed that the algebraic sum of the voltage drops across all of
the elements connected in a closed circuit loop is zero. Written in symbolic
terms, the KVL looks like the following:

K∑
k=1

[Va(t )− Vb(t )]k =
K∑

k=1

	Vk(t ) = 0, (5.28)

where K is the total number of elements in the closed circuit loop. Note
that we must pay close attention to the sign conventions built into the
constitutive laws of the circuit elements when we apply the KVL because it
calls for calculating an “algebraic sum” of the voltage drops. The KVL can
be applied to the circuit in Figure 5.7 (see Problem 5.16) to find once again
the result in eq. (5.27).

To return to our stated modeling task of charging a capacitor, let us
apply eq. (5.27) under the simple assumption of a constant input voltage,
Vin(t ) = V0 = constant:

dq(t )

dt
+ 1

τ
q(t ) = V0

R
. (5.29)

Remembering that the derivative of a constant is zero, it is not very hard to
show (see Problem 5.17) that we can construct a solution to eq. (5.29) in
the form

q(t ) = V0C + C1e−t/τ = τV0/R + C1e−t/τ . (5.30)

Once again the single arbitrary constant, C1, can be determined from the
circuit’s given initial conditions. In the simpler case where the initial charge
is supplied only by the voltage input, it follows from eq. (5.30) that

q(0) = 0 = V0C + C1.

The arbitrary constant is now determined and the complete correct solution
becomes:

q(t ) = V0C(1− e−t/τ ). (5.31)

Equation (5.33) is plotted in Figure 5.8, which is a more detailed version ofPredict?

the sketch given in Figure 5.3(b). We see that the charge increases exponen-
tially from its initially given value of zero. Here, however, the amount of
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Asymptote

Initial slope= V0 /R

q∞ = V0C
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Figure 5.8 The charge in the capacitor
when an input voltage, V0, is applied
across the terminals shown in
Figure 5.7. Note the unmistakable
resemblance of this drawing to the
sketch in Figure 5.3(b). Here the initial
slope, V0/R , and the asymptotic value of
the charge, q∞ = V0C , are called out.

charge does not increase to infinity. Instead, it asymptotically approaches a
maximum value given by

q∞ ≡ q(t →∞) = V0C . (5.32)

This asymptotic value of the charge, q∞ = V0C , is the maximum value that
the capacitor can hold for the given capacitance, C , and applied voltage,
V0. We also can calculate that the initial slope of the charging curve is V0/R.
If this slope were zero, then no charging would be possible and the charge
would remain at its initial value of zero. Of course, this circumstance could
only arise if no voltage were applied or if the resistance to that applied
voltage was infinitely large. Thus, once again we have found results that are
intuitively pleasing.

One last point here. We have charged a capacitor even though the circuit’s Improve?

decay constant is negative, that is, λ = −1/τ . We have thus imposed growth
on an exponential system that otherwise would have decayed. This serves
to point out that external conditions, such as the input voltage applied
here, can influence the behavior of an exponential system to an extent not
anticipated by the sign of the constant λ.

Problem 5.15. Verify that eq. (5.29) was properly derived from
eq. (5.28).

Problem 5.16. Apply the KVL of eq. (5.28) to the circuit in Figure 5.7
to confirm the validity of eq. (5.27).
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Problem 5.17. Confirm by differentiating eq. (5.31) that it satisfies
eq. (5.29).

Problem 5.18. Calculate the initial slope of the charging capacitor
from the solution given in eq. (5.31).

5.5 Exponential Models in Money Matters

We will now talk about money, that is, we will model elementary expo-Why?

nential behavior as seen in two important aspects of our financial lives.
First, we will talk about interest and compound interest, the repeated calcu-
lation of interest over shorter periods of time that produces higher effective
rates of interest than may be evident. Then we will describe inflation, the
phenomenon we see when prices rise rapidly and dramatically.

5.5.1 Compound Interest

It is hard to listen to the news these days without hearing reports on the
stock and bond markets. When the markets and their underlying econom-
ies are not doing well, we hear about whether or not the Federal Reserve
Bank will adjust the interest rates that the banks, including “The Fed,”
charge each other on interbank loans. We are besieged by advertisements
promising high interest returns on various savings instruments and low
interest rates on credit card balances and mortgage loans. For all this talk
of interest, however, few understand that interest is an exponential phe-
nomenon, which is one reason that economists speak of the time value of
money, and that very serious consequences follow inattention to interest
rates and compounding practices.

Consider first the latest unsolicited offer of a credit card promising anFind?

Predict? interest rate of only 0.75% per month, which is advertised as “only” 9%
per year and sounds cheap in this context. If the monthly interest was
compounded on a monthly basis, the effective annual interest rate is found
from the 12-fold multiplication

(1.0075)(1.0075) · · · (1.0075) = (1.0075)12 ∼= 1.0938. (5.33)

Thus, monthly compounding produces an effective annual interest rate
of about 9.38% per year. If these rates were continuously compounded, we
would use eq. (5.4) to find:

N (t )

N0
= e(0.0075)(12mos) ∼= 1.0942, (5.34)
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which represents an effective rate of 9.42% per year. Thus, depending on
how interest is applied or compounded, the effective interest rate charged on
a 9% (nominal) card would be 9.39% for monthly compounding and 9.42%
for continuous compounding. (United States law requires that advertise-
ments and transaction documents list the nominal, uncompounded APR or
Annual Percentage Rate, with compounding details and effective rates often
left to the fine print.) If these effective interest rates don’t seem like a very
big deal, consider that they add noticeable surcharges to the nominal rates.

We can also see the effects of compounding by looking at returns on How?

investment. Suppose that interest is promised at a nominal rate of 10% per
year. That interest could be calculated and distributed in discrete amounts
of 10% annually, 5% semiannually, 2.5% quarterly, and so on. For m
compounding periods per year, the initial investment would grow to:(

N

N0

)
m
=
(

1+ 0.10

m

)m

. (5.35)

We have shown some results for various compounding intervals in
Table 5.3. Note that the investment promises larger returns as the number
of compounding periods, m, is increased. Thus, it seems interesting to con- Find?

sider what will happen to the value of the unit investment as the number
of compounding periods becomes infinitely large.

Table 5.3 The growth of a unit investment
(i.e., N0 = 1) at a nominal rate of 10% with
returns compounded and payable m times
per year. Equation (5.35) is used to calculate
that growth.

Number of
Compounding Periods
per Year (m)

Value of a Unit
Investment (N0 = 1)

0 1.0000
1 1.1000
2 1.1025
4 1.1038

12 1.1047
365 1.1051559

We can easily answer this question by first recasting eq. (5.35) in terms How?

of a new variable x = m/0.10. Then eq. (5.35) becomes:(
N

N0

)
m
=
(

1+ 1

x

)0.10x

. (5.36)
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We now take the limit of eq. (5.36) as x becomes infinitely large:

(
N

N0

)
∞
= lim

x→∞

[(
1+ 1

x

)x]0.10

. (5.37)

Within this limit lies, in fact, the formal definition of the base e of the
natural logarithm:

e ≡ lim
x→∞

(
1+ 1

x

)x

. (5.38)

We thus see that our unit investment, continuously compounded, attainsFind?

in one year a value only slightly larger than the daily compounding shown
in the last line of Table 5.3:(

N

N0

)
∞
= e0.10 ∼= 1.1051709. (5.39)

It is worth noting that, for economists, interest represents the priceUse?

of money. What does that mean? Putting money into a savings account
means giving up an opportunity to buy something now in exchange for
the promise of being able to spend a larger amount of money—the initial
investment plus earned interest income—at a future date. This means trad-
ing the opportunity to spend $1.00 now for the opportunity to spend $1.10
a year from now. The bank has “purchased” money for its own investment
purposes at a price of $0.10 for the year, and the saver bought the chance
to spend still more money, $1.10, one year later. This means that money
has both a price and, again, a time value because investors make decisions
about what their money will be worth in the future. This brings us to a
second money issue, inflation, in which exponential behavior significantly
affects the price of money.

Problem 5.19. Are eq. (5.35) and (5.38) related? How?
Problem 5.20. Verify all of the steps that lead from eq. (5.35) to

eq. (5.39).
Problem 5.21. Construct a version of Table 5.3 for an annual interest

rate of 18%.

5.5.2 Inflation

Inflation has been a major economic and political problem in the UnitedWhy?

States at various times in the 20th century, and it has troubled and even
destabilized the economies of many other countries in just the last few
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years. Asian economies suffered major bouts of inflation in the late 1990s,
and at the very end of 2001 Argentina had street riots and five (!) presid-
ents in less than two weeks because of economic problems triggered in part
by serious inflation. Inflation occurs when the value of money declines
and the prices of goods and services rise accordingly. Countries suffer-
ing from bouts of inflation see the value of their currencies drop against
those of other countries, and the consequences of such economic imbal-
ances may include unemployment, trade embargoes and trade wars, and
severe, spreading economic dislocation. These topics are the province of
economics, “the dismal science,” but they are interesting to us because
inflation is an exponential phenomenon and the mathematics of inflation
is provocative.

Consider first simple price inflation as measured by the purchase price Find?

of gasoline. Gasoline cost a nickel a gallon in 1933, while at the end of 2001
it cost $1.00 per gallon. We can calculate the annual price inflation rate for
gasoline with eq. (5.5):

λprice = ln(1.00/0.05)

68 yr
∼= 0.0440/yr, (5.40)

which corresponds to a price inflation rate of 4.40% per year. This price Predict?

inflation rate caused gasoline’s price at the pump to go up by a factor of 20
in 68 years.

As appealing as this simple calculation may be, it would be quite mis- Valid?

leading to say that the real price of gasoline went up twentyfold during the
time 1933–2001 because, while the nominal or apparent price of gasoline
was going up, the value of the dollar itself was going down. That is, inflation Improve?

affects not only the price of goods and services; it also affects the price of
money. During the 68 years included in the previous calculation, the value
of the dollar declined substantially, because a 1933-dollar and a 2001-dollar
are only nominally the same. If we assume that the dollar was losing its pur-
chasing power at only 2% per year, we could calculate the value of a single
dollar after t years, v(t ), from eq. (5.14) with λ$ = 0.02/yr:

v(t )

v(1933)
= e−λ$(t−1933) = e−0.02(t−1933). (5.41)

Thus, after 1, 10, and 68 years, the purchasing power or value of a 1933-
dollar would be $0.98, $0.82, and $0.26, respectively. So, after almost
70 years, the 2001-dollar has turned out to be worth little more than one-
quarter of the 1933-dollar!

However, an economist would view this differently. Recall from Use?

Section 5.5.1 that we noted that interest is the price of money bought in a
forward-looking transaction.Thus, we can rephrase the question about the
loss of value in the dollar into a purchasing question: How much would
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one have to pay in 1933 to have $1.00 available in 2001? That is a price
question answered simply by inverting eq. (5.41):

v(1933)

v(t )
= e+λ$(t−1933) = e+0.02(t−1933). (5.42)

So, repeating the calculation just done in this different form, a purchaser
would have to invest $0.98, $0.82, and $0.26, respectively, in order to have
$1.00 available to spend in the years 1934, 1943, and 2001. Equation (5.42)
thus can be said to represent the currency inflation rate.

Purchases can then be assessed either in terms of their current sales pricesPredict?

or in terms of inflation-adjusted dollars that support the calculation of a
real economic price that reflects changes in a currency’s purchasing power.
We would calculate that real price by subtracting the currency inflation
rate from the price inflation rate, that is,

λreal = λprice − λ$. (5.43)

Equation (5.43) then states that the real inflation rate over the time interval
1933–2001 is then, from the example data given above, λreal = 4.40 −
2.00 = 2.40%.

We do not mean to suggest that inflation is an easy problem because
it can be modeled with exponential mathematics. The foregoing analyses
have truly simplified the world of economics. Economics has become in
recent times a mathematically-oriented social science, as evidenced in part
by the sophisticated mathematical models that led to the prizes won by
most recent Nobel laureates. However, we do want to point out that the
cumulative effects of percentages in economics can be enormous. We haveImprove?

ignored some measures that have been developed to deal with inflation,
such as indexing, in which intended benefits are linked to a cost or price
index, such as the oft-cited CPI, the consumer price index. We have also com-
pletely ignored the effects of technical innovation, productivity changes,
new sources of energy, and many other factors that affect prices. Suffice it
to say that the economics and politics of exponential growth in monetary
affairs merit attention.

Problem 5.22. If gasoline cost $0.70/gallon in 1978, calculate and
compare the price inflation rates for the intervals
1933–1978 and 1978–2001.

Problem 5.23. If the cost of money exceeds the cost of goods, what
happens to λreal?

Problem 5.24. Speculate on the potential effects of λreal staying
negative for long periods of time.
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5.6 A Nonlinear Model of Population Growth

In Sections 5.1 and 5.2 we discussed population growth and projections Improve?

based on an elementary exponential model in which the population growth
rate is linearly or directly proportional to the current size of the population.
While we focused exclusively on growth rates, we could extend such linear
models to account for mortality or death rates simply by taking the growth
rate in eq. (5.1) as an effective or net rate that reflects the difference between
birth and death rates:

λeffective = λbirth − λdeath . (5.44)

In fact, we could also account for immigration and emigration in the How?

analysis of the population changes of a particular country by writing a
balance law much like eqs. (1.1) and (1.2) and accounting for the various
growth and decay rates as:

dN (t )

dt
= (λbirth − λdeath + λimmigration − λemigration)N (t ). (5.45)

However, it is certain that these models either grow or decay monotonically,
as simple exponentials, no matter how much we refine the details of these
linear growth and decay rates. The fundamental behavior is unchanged, so
that if we find the classic model inadequate, we need to change that model
in a different way.

We would like to expand the notion of exponential growth to incor- Why?

porate the idea of limited growth. There are many factors that do limit
growth and that modelers have tried to incorporate into population pro-
jections, including resources, both renewable and nonrenewable, energy,
capital (money), food supplies and distribution mechanisms, education,
and family planning. These models were very popular in the late 1970s,
but they were also both complicated and, by some, derided as unrealistic.
Much of the complexity of those models stemmed from the fact that many
of the growth variables are coupled, that is, the amount of capital formu-
lation may depend on pollution indices and on energy availability, as well
as on the instantaneous supply of money. Further, the right-hand side of
eq. (5.1) may be more complex because the relationships among single or
coupled variables may not be linear. How could that be?

It could be more complex if we were to think of the right-hand side of Assume?

eq. (5.1) as a Taylor series of a nonlinear function of N (t ) that is not yet
defined. Thus, we would start by replacing eq. (5.1) by a more general
formulation

dN (t )

dt
= f (N (t )), (5.46)
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which states that the rate of growth of a population N (t ) is equal to some
undefined function of the population, f (N (t )). Then, as we did for seriesHow?

representations of functions in Chapter 4, we could expand that function
into a Taylor series such that:

dN (t )

dt
= f (N (t )) = C0 + C1N (t )+ C2N 2(t )+ · · · . (5.47)

We would have to say first that C0 = 0 simply because the growth rate
of a population should be zero whenever the population size is zero. The
constant C1 must be our traditional growth rate, say λ1. Then there are
other constants, Ci , to evaluate, depending on how many terms we choose
to keep in this series representation of f (N (t )). How do we evaluate these
other constants?

We illustrate that by narrowing our focus to a particular quadraticPredict?

approximation in which eq. (5.47) takes the form:

dN (t )

dt
= λ1N (t )− λ2N 2(t ), (5.48)

wherein both of the parameters λ1 and λ2 are taken as positive: λ1, λ2 > 0.
In eq. (5.48) λ1 corresponds to the population’s uninhibited or net growth
rate. The meaning of λ2 emerges from noting that the rate of growth
vanishes when N (t ) = Nmax:

λ1Nmax − λ2N 2
max = 0,

or when
1

λ2
= Nmax

λ1
. (5.49)

Thus, the reciprocal of λ2 is the time needed for the maximum obtainable
population to be achieved by uninhibited growth. On the other hand, with
the aid of eq. (5.49), we can eliminate λ2 from that the nonlinear equation
and write it as:

dN (t )

dt
= λ1N (t )

(
1− N (t )

Nmax

)
. (5.50)

Equation (5.50) shows a modification of the elementary exponential
model where the growth rate is reduced by a factor representing the pro-
portion of unrealized population growth, that is, the population represented
by the difference between the maximum and instantaneous population
values:

dN (t )

dt
= λ1N (t )

(
Nmax − N (t )

Nmax

)
. (5.51)
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Figure 5.9 The logistic growth curve,
shown as a model of limited or bounded
growth as the population N (t ) moves from
an initial population value, N0, to its
maximum value, Nmax. It is plotted for the
values N0 = 1, Nmax = 10, and λ1 = 1.

There is a closed-form solution to eq. (5.51), despite the nonlinearity,
and it is (see Problem 5.28):

N (t ) = Nmax

1+
(

Nmax − N0

N0

)
e−λ1t

, (5.52)

where N (t = 0) = N0 is the initial population. We have plotted eq. (5.52),
known as the logistic growth curve, in Figure 5.9. Note that we can recover
both the initial value of the population at t = 0, as well as the maximum
value as time becomes indefinitely large.

We should observe again that we have not exhausted by any means the
spectrum of exponential growth models. Nevertheless, we have shown here
that models can lead to restricted or limited growth, which should provide
some interest in exploring different exponential models in greater detail.

Problem 5.25. Look up the U.S. birth, death, immigration and emig-
ration figures for the 10 decades of the 20th century
and use the balance equation (5.45) to calculate the
population changes that these rates predict.

Problem 5.26. How do the predictions of Problem 5.25 compare
with the actual U.S. census data?

Problem 5.27. What are the implications for the model of eq. (5.48)
of loosening the restriction that λ1, λ2 > 0?

Problem 5.28. Confirm by differentiating eq. (5.52) that it satisfies
eq. (5.51).
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5.7 A Coupled Model of Fighting Armies

We will now examine another exponential model wherein the complica-
tion of coupled populations is addressed. This model and the resulting
Lanchester’s law are named after Frederick William Lanchester (1868–
1946), a remarkable British aeronautical engineer who wrote serious works
on economics and fiscal policy, the theory of relativity, military strategy, as
well as aerodynamics. Lanchester wanted to describe the attrition of oppos-Why?

ing forces at war. Following this attrition required modeling the changes
Find?

of two army populations whose respective rates of attrition depend on the
size of the opposing army. Thus, there are two armies whose attrition orGiven?

decay rates are of interest, each of whose decay rates are proportional to
the size of the other force. We will identify the two army populations as
friendly forces, F(t ), and enemy forces, E(t ). Since the rate of change of
F(t ) depends on E(t ) and vice versa, we say that these variables are coupled,
or that we are solving a coupled problem. This model also has the nice fea-
ture, encapsulated in Lanchester’s law, that we can obtain a great deal of
information with a qualitative approach to the governing differential equa-
tions. We will use qualitative analyses to describe energy conservation and
dissipation for a vibrating pendulum in Sections 7.1.5 and 7.1.6 and for the
interaction of predators and prey in Section 7.6.

Consider that at some time, t , we have populations F(t ) of friendly
troops and E(t ) of enemy troops. Further, as we intended, let us assumeAssume?

that the rates of change of their respective populations are proportional to
the opposing combat force’s size:

dF(t )

dt
= −λE E(t ),

dE(t )

dt
= −λF F(t ).

(5.53)

The parameters, λE and λF , respectively, represent the effectiveness of theHow?

enemy and friendly forces, with interesting units: λE is the loss rate per
unit time of friendly troops per enemy troop. Thus, if λE is larger than λF ,
the enemy troops are more effective because more friendly troops are lost
per unit time and per unit of enemy forces.

Equation (5.53) also shows more explicitly the meaning of coupling in aUse?

set of equations. Simply put, dF/dt depends on E(t ), and dE/dt depends
on F(t ). That is why the pair of eqs. (5.53) are called coupled equations. It
can be shown that this coupled pair of first-order equations is equivalent
to a single second-order equation by, for example, simply treating the first
of eq. (5.53) as an equation that defines E(t ), and then substituting it into
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the second of eq. (5.53):

dE(t )

dt
= − 1

λE

dF 2(t )

dt 2
= −λF F(t ), (5.54a)

which is easily rearranged into the form:

dF 2(t )

dt 2
− λEλF F(t ) = 0. (5.54b)

Once this uncoupled second-order equation is solved for its single depend-
ent variable, F(t ), the second dependent variable, E(t ), can be found
without further integration (see Problem 5.29).

The formal solution to eqs. (5.53) or (5.54) can be found in terms of
hyperbolic sines and cosines, which are also exponential functions. We will
not do that here, although the form of eq. (5.54b) should be recalled when
we discuss the vibration of pendulums in Chapter 7. Instead, we will show How?

Predict?here how we can obtain a lot of information without formally solving the
governing equations. We do this by first multiplying the first of eq. (5.53)
by λF F(t ) and the second of eq. (5.53) by λE E(t ), after which we find:

λF F(t )
dF(t )

dt
= −λEλF F(t )E(t ),

λE E(t )
dE(t )

dt
= −λFλE E(t )F(t ).

(5.55)

Since the right-hand sides of eq. (5.55) are the same, it follows that:

λF F(t )
dF(t )

dt
= λE E(t )

dE(t )

dt
. (5.56)

It is easy to show that eq. (5.56) is equivalent to the statement that:

d

dt
(λF F 2(t )− λE E2(t )) = 0,

or
λF F 2(t )− λE E2(t ) = constant. (5.57)

The constant in eq. (5.57) must have the same value it had at the beginning
of the combat being modeled. With E0 = E(t = 0) and F0 = F(t = 0), it
follows that:

λF F 2(t )− λE E2(t ) = λF F 2
0 (t )− λE E2

0 (t ),

or

λF (F
2(t )− F 2

0 (t )) = λE(E
2(t )− E2

0 (t )). (5.58)
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Equation (5.58) is called Lanchester’s square law. We can use the square lawUse?

to calculate the final size of the winning army when the enemy forces have
been annihilated without solving any differential equations. Assume that
victory is declared when all of the enemy forces are gone from the scene. In
this case, Efinal = 0. The number of friendly troops remaining then follows
from eq. (5.58) as:

F 2
final(t ) = F 2

0 (t )−
λE

λF
E2

0 (t ). (5.59)

Thus, even in victory the number of (surviving) friendly troops is reduced
by an amount proportional to the square of the initial size of the enemy
force.

The dependence of the friendly and enemy force sizes on the respectiveValid?

squares has intriguing consequences. Suppose that two equally effective
armies oppose each other. This means λE = λF , and that Lanchester’s law
[eq. (5.58)] becomes:

F 2(t )− E2(t ) = F 2
0 (t )− E2

0 (t ). (5.60)

Suppose further that two combat scenarios were being considered by
military planners. In the first scenario, a friendly army of 50,000 soldiers
faces an enemy force of 40,000 and then meets a second enemy force of
30,000 soldiers. In the second scenario, the same friendly army meets an
enemy force of 70,000, that is, it meets the same number of enemy troops
assembled for a single fight. In the sequential scenario, the friendly army
prevails in the first of its two battles with a surviving forces of 30,000
because [(50,000)2− (40,000)2] = (30,000)2, which is just enough to force
a draw with the enemy in the second battle. If the armies meet in the
second scenario, however, the friendly forces lose by a significant margin
because (50,000)2 is less than (70,000)2. This clearly shows that strategy is
important, especially that well-known precept of divide and conquer !

Of course, all of the Lanchester results are predicated on the rate equa-Improve?

Verified? tions (5.53), an assumption that must be kept in mind when the model is
exercised. Suitably modified to include other effects (e.g., introducing rein-
forcements), the Lanchester model has modeled the outcomes of famous
battles such as Iwo Jima (see Problems 5.47 and 5.48).

Problem 5.29. Assuming that eq. (5.54b) can be solved for F(t ),
show that E(t ) can be determined without further
integration.

Problem 5.30. Confirm that eq. (5.57) does follow from eq. (5.55)
via eq. (5.56).
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Problem 5.31. Suppose you are given the solution for the enemy
population that satisfies eq. (5.53) as

E(t ) = E0 cosh αt −
√
λF

λE
F0 sinh αt ,

where α2 = λEλF . How much time does it take for
the enemy forces to be completely annihilated?

Problem 5.32. Would the strategy of divide and conquer work for a
“linear attrition law” that for equally effective armies
replaces eq. (5.57) with

F(t )− E(t ) = F0(t )− E0(t )?

5.8 Summary

We dealt with a wide variety of exponential behavior models in this chapter,
including population growth, radioactive decay, charging and discharging
of capacitors, inflation and interest, and armies at war. While some of the
behavior was about decay, it is the cases of exponential growth that really
draw our attention. We saw the importance of scale in presenting and
assessing various growth phenomena. We noted that decay effects can be
modified by external inputs, such as the charge in a capacitor responding to
an applied voltage. We also explored the nonlinear logistic growth model
and the coupled Lanchester square law.

It is worth noting that we have touched on some very timely issues. At
the same time, we have not “solved” any of these very real “problems.” But
we have shown that the models chosen can influence our projections and
perceptions of these problems, as well as the ways we might approach them
in the “real world”.
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5.10 Problems

5.33. Show that if it takes time, tc , to count a population, P(t ), that has a
growth rate of λ, the population will increase by an amount equal
to λtc P(t ).

5.34. (a) If the population counting rate is c , how long does it take to
count the population at time, t ?

(b) How much time does it take to count the increase in population
that occurred while it was being counted at time t ?

5.35. Find the actual world population figures for 1970, 1980, 1990, and
2000. Use these data to update the projections shown in Figures 5.1
and 5.2.
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5.36. Using the 2% growth rate, plot the world population from 1960 to
2060 with an ordinate scale of 10 billion people per 1.50 in. Does
this curve look like “reasonable” exponential growth?

5.37. The ordinate scales of Figures 5.1 and 5.2 are, respectively, 1.5 in =
100 billion people and 1.5 in= 3 million billion people. How much
paper is needed to plot the 1960 world population of 3 billion people
and the projected 2692 world population of 5.63×1015 people using
each of those scales?

5.38. Plot the growth of world population from a 1960 value of 3 billion
people at growth rates of 1, 2, and 3% per year through 2700 using
semi-logarithmic paper. What shapes are these curves? What are
their slopes and intercepts?

5.39. What is the time constant, comparable to that for an RC circuit, for
a population decaying at a rate per unit time λ?

5.40. How much should be set aside in 2002 in a savings account earning
5.5% per year to accumulate $1,000,000 by 2022? By 2042?

5.41. Suppose that there was a steady inflation rate of 3% per year, what
would the investments of Problem 5.40 have to be to accumulate
$1,000,000 in 2042 measured in 2002 dollars?

5.42. The noted (and recently deceased) historian Stephen Ambrose has
chronicled the growth of American railroads by listing the following
amounts of total track by decade: 726 mi (1834), 4311 (1844), 15,675
(1854), and 33,860 (1864). Determine:
(a) the decade-by-decade growth rate; and
(b) the growth rate for exponential growth across all the data given.

5.43. Verify by differentiation and substitution that the following solution
satisfies eqs. (5.53):

F(t ) = F0 cosh αt −
√
λE

λF
E0 sinh αt ,

E(t ) = E0 cosh αt −
√
λF

λE
F0 sinh αt .

5.44. Confirm that the solution verified in Problem 5.43 satisfies
Lanchester’s square law of eq. (5.58).

5.45. The initial strengths of two opposing armies are F0 = 10,000 and
E0 = 5000 troops, with equal loss rates of 0.1 per day. Who will win?
How long will the battle take? (Hint : See Problem 5.31.) How many
troops will the victor have when the enemy is vanquished? Graph
the army populations until the enemy is completely annihilated.

5.46. The initial strengths of two opposing armies are F0 = 10,000 and
E0 = 5000 troops, and λF = 0.1 per day. Who will win and with
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what remaining forces if λE = 0.2, 0.5, and 1.0 per day? What value
of λE would produce a draw?

5.47. The landmark World War II battle of Iwo Jima began with troop
sizes of F0 = 54,000 and E0 = 21,500 troops, with λF = 0.0106 per
day and λE = 0.0544 per day. Absent any reinforcements, how long
would this battle have lasted? How many troops would the victor
have when the loser’s forces were totally exhausted?

5.48. In order to end the fight for Iwo Jima in 28 days, how many troops
would the United States have had to have initially? How do the U.S.
losses in this scenario compare to those found in the scenario of
Problem 5.47?


