
3
Scale

In this chapter we will continue dealing with dimensions, but focusing
now on issues of scale, that is, issues of relative size. Size, whether absolute
or relative, is very important because it affects both the form and the
function of those objects or systems being modeled. Scaling inßuencesÑ
indeed, often controlsÑthe way objects interact with their environments,
whether we are talking about objects in nature, the design of experiments,
or the representation of data by smooth, nice-looking curves. We even
Þnd references to scaling in literature, such as in the depiction by satirist
Jonathan Swift of the treatment accorded the traveler Gulliver when he
arrived in the land of Lilliput:

His Majesty’s Ministers, finding that Gulliver’s stature exceeded theirs in the pro-
portion of twelve to one, concluded from the similarity of their bodies that his must
contain at least 1728 of theirs, and must needs be rationed accordingly.

This chapter is devoted to explaining where the factor of 1728 came from,
as well as discussing abstraction and scale, size and shape, size and function,
scaling and conditions that are imposed at an objectÕs boundaries, and some
of the consequences of choosing scales in both theory and experimental
measurements.

3.1 Abstraction and Scale

We start with some thoughts about the process of deciding on the appro-
priate level of detail for whatever problem is at hand, which also means
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34 Chapter 3 Scale

deciding on the appropriate level of detail for the corresponding model.
We call this process abstraction. It typically requires an organized, thought-
ful approach to identifying those phenomena to which we really want to
pay attention. In addition, thinking about scaling often requires that we
think in terms of the magnitude or size of quantities measured with respect
to a standard that has the same physical dimensions.

For example, a linear elastic spring can be used to model more than just
the relation between force and relative extension of a simple coiled spring,
as in an old-fashioned butcherÕs scale or an automobile spring. We could,
for example, use F = kx to describe the static load-deßection behavior of
a diving board, but the spring constant k should reßect the stiffness of
the diving board taken as a whole, which in turn reßects more detailed
properties of the board, including the material of which it is made and its
own dimensions. The validity of using a linear spring to model the board
can be ascertained by measuring and plotting the deßection of the boardÕs
tip as it changes with standing divers of different weight.

We had noted in Section 1.3.1 that the classic spring equation is also used
to model the static and dynamic behavior of tall buildings as they respond
to wind loading and to earthquakes. These examples suggest that we can
use a simple, highly abstracted model of a building by aggregating various
details within the parameters of that model. That is, the stiffness k for a
building would incorporate or lump together a great deal of information
about how the building is framed, its geometry, its materials, and so on. For
both a diving board and a tall building, we would need detailed expressions
of how their respective stiffnesses depended on their respective properties.
We could not do a detailed design of either the board or of the building
without such expressions. Similarly, using springs to model atomic bonds
means that their spring constants must be related to atomic interaction
forces, atomic distances, sub-atomic particle dimensions, and so on.

Another facet of the abstraction process is that in each case we are saying
that, for some well-deÞned purposes, a Òreal,Ó three-dimensional object
behaves like a simple spring. We are thus introducing the concept of a
lumped element model wherein the actual physical properties of some real
object or device are aggregated or lumped into a less detailed, more abstract
expression. An airplane, for example, can be modeled in very different ways,
depending on our modeling goals. To lay out a ßight plan or trajectory, the
airplane can simply be considered as a point mass moving with respect to a
spherical coordinate system. The mass of the point can simply be taken as
the total mass of the plane, and the effect of the surrounding atmosphere
can also be modeled by expressing the retarding drag force as acting on the
mass point itself with a magnitude related to the relative speed at which the
mass is moving. If we want to model and analyze the more immediate, more
local effects of the movement of air over the planeÕs wings, we would build
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a model that accounts for the wingÕs surface area and is complex enough to
incorporate the aerodynamics that occur in different ßight regimes. If we
want to model and design the ßaps used to control the planeÕs ascent and
descent, we would develop a model that includes a system for controlling
the ßaps and also accounts for the dynamics of the wingÕs strength and
vibration response.

Clearly, as we talk about Þnding the right level of abstraction or the
right level of detail, we are simultaneously talking about Þnding the right
scale for the model we are developing. Scaling or imposing a scale includes
assessing the effects of geometry on scale, the relationship of function to
scale, and the role of size in determining limits. We must think about all
of these ideas when we are determining how to scale a model in relation to
the ÒrealityÓ we want to capture.

Lastly, we often look at the scale of things with respect to a magnitude
set within a standard. Thus, when talking about freezing phenomena,
we expect to reference temperatures near the freezing point of mate-
rials included in our model. Similarly, we know that the models of
Newtonian mechanics work extraordinarily well for virtually all of our
earth- and space-bound applications. Why is that so? Simply because the
speeds involved in all of these calculations are far, far smaller than c ,
the speed of light in a vacuum. Thus, even a rocket Þred at escape
speeds of 45,000 km/hr seems to stand still when its speed is compared
to c ≈ 300,000 km/s = 1.080× 109 km/hr! These scaling ideas also repre-
sent something of an extension of the ideas behind dimensionless variables
that we discussed in Chapter 2. For example, in EinsteinÕs general theory
of relativity, the mass of a particle moving at speed, v , is given as a
(dimensionless) fraction of the rest mass, m0, by

m

m0
= 1√

1− (v/c)2
. (3.1)

The scaling issue involved here, as we will discuss in Section 3.4, is ensuring
that the square of the dimensionless speed ratio is always much less than 1,
so that m ∼= m0.

3.2 Size and Shape: Geometric Scaling

In Figure 3.1 we show two cubes, one of which has sides of unit length in
any system of units we care to choose, that it, the cubeÕs volume could be
1 in3 or 1 m3 or 1 km3. The other cube has sides of length L in the same
system of units, so its volume is either L3 in3 or L3 m3 or L3 km3. Thus, for
comparisonÕs sake, we can ignore the units in which the two cubesÕ sides
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Figure 3.1 Two geometrically similar cubes,
one with sides of unit length (that is, having
lengths equal to 1 measured in any system of
units), and the second with sides of length L
as measured in the same units as the
“unit cube.”

are actually measured. The total area and volume of the Þrst cube are,
respectively, 6 and 1, while the corresponding values for the second cube
are 6L2 and L3. We see immediately an instance of geometric scaling, that is,
the area of the second cube changes as does L2 and its volume scales as L3.
Thus, doubling the side of a cube increases its surface area by a factor of
four and its volume by a factor of eight.

3.2.1 Geometric Scaling and Flight Muscle

Fractions in Birds

Geometric scaling has been used quite successfully in many spheres of bio-
logy, for example, for comparing the effects of size and age in animals of the
same species, and for comparing qualities and attributes in different species
of animals. As an instance of the latter, consider Figure 3.2 wherein are plot-
ted the total weight of the ßight muscles, Wfm , of quite a few birds against
their respective body weights, Wb . How many birds are Òquite a fewÓ? The
Þgure caption states that the underlying study actually included 29 birds,
but the Þgure shows data only within the range 10 ≤ bird number ≤ 23.
For the 14 birds shown in Figure 3.2 there seems to be a fairly nice straight
line Þt for the data presented. While Þtted by eye, that straight line can be
determined to be:

Wfm
∼= 0.18Wb . (3.2)

Equation (3.2) suggests that ßight muscle makes up about 18% of a birdÕs
body weight and that ßight muscle weight scales linearly withÑor is
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Figure 3.2 A simple linear fit on a plot of the total weight
of the flight muscles against body weight for 14 of the
29 birds studied, including starlings, barn owls, kestrels,
common terns, mallards, and herons (after Figure 1–2 of
Alexander, 1971).

proportional toÑbody weight, a result that seems reasonable enough from
our everyday observations of the birds around us.

3.2.2 Linearity and Geometric Scaling

These straightforward geometric scaling arguments can also be used to
demonstrate some ideas about linearity in the context of geometrically sim-
ilar objects, that is, objects whose basic geometry is essentially the same.
In Figure 3.3 we show two pairs of drinking glasses: One pair are right
circular cylinders of radius r , the second pair are right circular inverted
cones having a common semi-vertex angle α. If the Þrst pair are Þlled to
heights h1 and h2 respectively, the total ßuid volume in the two glasses is

Vcy = πr2h1 + πr2h2 = πr2(h1 + h2). (3.3)

Equation (3.3) demonstrates that the volume is linearly proportional to the
height of the ßuid in the two cylindrical glasses. Further, since the total
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Figure 3.3 Two pairs of drinking glasses: One
pair are cylinders of radius r , the second pair
are inverted cones (sometimes referred to as
martini glasses) having a common semi-vertex
angle α.

volume can be obtained by adding or superposing the two heights, the
volume Vcy is a linear function of the height h. (Recall the discussion in
Section 1.3.4.) Note, however, that the volume is not a linear function of
the radius, r .

For the two conical glasses, we see that their radii vary with height.
In fact, the volume, Vco , of a cone with semi-vertex angle, α, Þlled to
height, h, is

Vco = π

3

h3

tan2 α
. (3.4)

Hence, the total volume of ßuid in the two conical glasses of Figure 3.3 is

Vco = π

3

h′31
tan2 α

+ π
3

h′32
tan2 α

	= π

3

(h′1 + h′2)3

tan2 α
. (3.5)

The relationship between volume and height is nonlinear for the conical
glasses, so we cannot calculate the total volume just by superposing the two
ßuid heights, h′1 and h′2.

3.2.3 “Log-log” Plots of Geometric Scaling Data

We now choose to ask a question: What happened to the other 15 birds
in the small scaling study of Section 3.2.1? (Among those discriminated
against in Figure 3.2 are hummingbirds, wrens, robins, skylarks, vultures,
and albatrosses.) These birds were not included because the bird weights
studied spanned a fairly large range, which made it hard to include the
heavier birds (e.g., vultures and albatrosses) in the plot of Figure 3.2 without
completely squashing the data for the very small birds (e.g., hummingbirds
and goldcrests). This suggests a problem in organizing and presenting data,
in itself an interesting aspect of scaling.
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Figure 3.4 A “log-log” plot of the total weight of the flight muscles
against body weight for 29 birds, including hummingbirds, wrens,
terns, mallards, eagles, and albatrosses. Compare this with the linear
plot of the data of Figure 3.2 (after Figure 1–4 of Alexander, 1971).

There is a straightforward way to include the heretofore left-out data:
Construct log-log plots in which the logarithms of the data (normally to
base 10) are graphed, as shown in Figure 3.4. In fact, the complete data set
was plotted, essentially doubling the number of included data points, and
a statistical regression analysis was applied to determine that the straight
line shown in Figure 3.4 is given by:

Wfm = 0.18W 0.96
b . (3.6)

We could observe that eq. (3.6) is not exactly linear because, after all,
0.96 	= 1. However, it is clear that eqs. (3.2) and (3.6) are sufÞciently close
that it is still quite reasonable to conclude that ßight muscle weight scales
linearly with body weight.

However, this second look at the ßying muscle weight of birds raises two
interesting scaling issues of scaling: First, how do we handle nonlinearities?
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Second, how do we handle large ranges of data? In fact, we have just seen
that these two questions are not unrelated because we found the almost
linear, small nonlinearity in eq. (3.6), as a result of looking at an extended
range of data.

We also have already provided an answer to the second question, namely,
introducing log-log plots to extend our graphical range. Of course, with
modern computational capabilities, we could skip the Òold fashionedÓ
method of laboriously plotting data and simply enter tables of data points
and let the computer spit out an equation or a curve. But something is
gained by thinking through these issues without a computer.

Consider the data that emerged from a study of medieval churches and
cathedrals in England. Large churches and cathedrals of that area (see
Figures 3.5) were generally laid out in a cruciform pattern (viz., Figure 3.6)
so that the nave was the principal longitudinal area, extending from a
front entrance to a chancel or altar area at the back, and the transept was
set out as a section perpendicular to the nave, quite close to the chancel.
Was the cruciform shape ecclesiastically motivated, that is, was it inspired
by religious feeling? In fact, research suggests that scaling dictated the

(a) (b)

Figure 3.5 Interior views of two church naves : (a) The oldest
Romanesque cathedral in England, St. Albans, has a nave with a
relatively low height-to-length ratio; (b) The late Gothic style, also
called the perpendicular style, is exemplified by the Canterbury
Cathedral, whose nave has a relatively high height-to-length ratio (used
by permission of the late Professor S. J. Gould of Harvard University).
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Figure 3.6 The plan of the Norwich Cathedral showing its cruciform
shape, including the longitudinal nave, extending from the front door
(left) to the rear apse (right), and the perpendicular transept (after
Gould, 1975).

cruciform shape, and that the scaling was inspired by the need for both
good lighting and sound structures.

We start by taking the length of a church as the Þrst-order indicator of its
size. Thus, the longer its length, the larger the church. Then we examine the
data displayed in Figure 3.7, which is a log-log plot of nave height against
church length for a variety of medieval cathedrals and churches in England
and on the European continent. We see from that data that as church length
(and size) increase, the heights of their naves increases in absolute terms
but falls off in relative terms. That is, as churches get longer (and larger),
their naves get relatively smaller. Further, although we do not give the data
to buttress this assertion, the bigger churches tend to have narrower naves.
Why don’t the nave height and width increase with church size? The answer
has to do with the scaling of surface areas and enclosed volumes, that is,
with geometric scaling.

The relevant scaling refers to the change in the area enclosed in a church
as it is made longer (and larger). A longer church has a longer perimeter. In
buildings of constant shape, the surface area of the enclosing wall increases
linearly with the perimeter length, while the enclosed volume increases as
(perimeter length)2. Thus, problems emerge as it becomes more difÞcult
for light and fresh air to penetrate into the churchÕs interior as its peri-
meter increases. (Remember that these marvelous structures were built
long before the invention of the light bulb and air conditioning!) However,
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Figure 3.7 A plot of log (church nave height) against log
(church length), with circled dots indicating Romanesque
churches and letters standing for English churches as follows:
B, Earls Barton; C, Chichester; D, Durham; E, Ely; G, Gloucester;
H, Hereford; N, Norwich; P, Peterborough; S, St. Albans; and
W, Winchester (used by permission of the late Professor
S. J. Gould of Harvard University).

the severity of the lighting and ventilation problems can be reduced by
introducing the transept because it enables a relatively constant nave width,
thus taking away the Òconstant shapeÓ constraint. If the width is kept con-
stant, then the enclosed area increases linearly with perimeter length, as
does the churchÕs length (and size). And, of course, such a church will then
appear to be relatively narrow!

Increasing a naveÕs width along with its length is another way to increase
the enclosed area, but this approach also exacerbates interior lighting and
ventilation problems. And it creates still another problem, namely that of
building a roof with a larger surface area to cover the enlarged, enclosed
area. Since roofs of cathedrals and churches were built to sit atop stone
vaults and arches, roof spans became critical because it was very hard to
build wide stone arches and vaults. The difÞculty of building wide arches
also interacts with the height of the nave for it is the nave walls that support
the outward thrust developed in the roof vaults, even when the nave walls
are supported by ßying buttresses (see Figure 3.8). Thus, higher nave walls
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Figure 3.8 A cross-section of London’s
Westminster Abbey looking down the axis of
the nave, showing the roof vault and the
flying buttresses and their piers that support
both roof vaults and nave walls. On the left
(south) side there are two sets of flying
buttresses, and the main buttressing piers
are located beyond the cloister that abuts the
church along that side (after Heyman, 1995).

had to be thicker to support both their own weight and the weight of
the roofs supported by the vaults, which were in turn supported at the
more-ßexible tops of the walls. Therefore, in sum, the width and height
of cathedral naves had to be scaled back as overall church length (or size)
was increased lest problems of lighting, ventilation, and structural safety
become insoluble.
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Problem 3.1. On what basis did the Lilliputians conclude that
Gulliver needed 1728 times as much food as they did?

Problem 3.2. How would the LilliputiansÕ conclusion change if they
had thought about the exchange of energy between a
person (of any size) and the surrounding environment?

Problem 3.3. How do the surface area and volume of a sphere scale?
Why? (Hint : Analyze spheres of radii 1 and R.)

Problem 3.4. Explain what would happen to an angle between two
lines inscribed on a balloon as it was inßated to a radius
R from a radius of 1.

Problem 3.5. ConÞrm that eq. (3.2) does adequately portray the
straight line drawn in Figure 3.2.

Problem 3.6. Show how the equation y = mxb becomes a linear
equation in a log-log plot.

Problem 3.7. Write eq. (3.6) in a form suitable for a log-log plot.

3.3 Size and Function–I: Birds and Flight

We now examine another set of empirical data, taken from a study of the
aerodynamics of birds in ßight and displayed in Figure 3.9. It appears from
this plot that a straight line can be penciled in to Þt the data, and it also
seems that there is no data for bird weights greater than 35Ð40 pounds. We
are thus prompted to ask two questions: Can the general form of this data
be explained by dimensional analysis, along the lines of our discussions of
Chapter 2? And, is there an upper limit to the weight of a ßying1 bird? The
answers to both questions are afÞrmative.

The answer to the Þrst question can be found by looking at the Þt of the
straight line in the log-log plot of Figure 3.9. A close examination of the
Þtted line shows that its slope is 1:3, which suggests that

Weight ∝ (Wing loading)3. (3.7)

But does eq. (3.7) make dimensional sense?
For birds that soar (e.g., gulls and buzzards), we argue that the lift forces

needed to sustain them in the air should be proportional to the wing areas,
or in dimensional terms, proportional to (length)2. The wing loading is

1 Remember that several creatures categorized as birds have never taken wing, including
penguins and ostriches, so we really do need the adjective Òßying.Ó
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Figure 3.9 A set of empirical data, taken from a study of the
aerodynamics of birds in flight (von Karman, 1954). It appears from this
plot that a straight line can be penciled in to fit the data, and it also
seems that there is no data for bird weights greater than 35–40 lb.

the load a bird has to carry, which is just its weight, which is proportional
to its volume. Thus, in dimensional terms, the wing loading is propor-
tional to (length)3. Then the wing loading per unit of wing area would
be proportional to (length)3/(length)2, or to (length). Since the weight is
proportional to (length)3 and the wing loading to (length), eq. (3.7) is
dimensionally consistent.

The second question, about the existence of an upper bound to ßy-
ing weight, is harder to answer. We will answer it, but in the somewhat
restricted domain of hovering flight because the aerodynamic arguments
are simpler. We will formulate the problem by examining the dimensions
of both the power needed to sustain hovering and the power available to
sustain hovering.

3.3.1 The Power Needed to Hovering

A bird ßaps its wings when it is hovering. In so doing, the bird generates
the needed hovering power by moving a mass of airÑand so transferring
momentumÑdownward. NewtonÕs second law says that the time rate of
change of the momentum of that jet of air must be equal to the total lift
force on the wings, which is, in turn, equal to the birdÕs weight. The mass of
air moving through the jet can be estimated in terms of the air density, ρ,
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the wing area, A, and the jet speed, v , as

mass/time = ρAv . (3.8)

The time rate of change of momentum is then just the product v ×
(mass/time), which is, again, equal to the bird weight, W :

W = v ×mass/time = ρAv2. (3.9)

In view of the dimensional dependencies of the birdÕs weight and wing area,
it follows from eq. (3.9) that the velocity of the air mass for hovering must
be such that

v ∝ L1/2. (3.10)

The power needed to sustain the hovering jet is equal to the time rate of
change of the kinetic energy of the mass of air in the jet. Thus,

power needed ∝ 1
2ρAv × v2. (3.11)

In view of eqs. (3.10) and (3.11) taken together, the scaling of the power
needed for a bird to hover scales with length according to:

power needed ∝ L7/2. (3.12)

Equation (3.11) is valid for forward ßight as well as hovering. It can be
conÞrmed by more complete, more complex aerodynamic arguments.

3.3.2 The Power Available for Hovering

There are three ways we can estimate the power available to a bird to
enable it to hover. We can estimate its heat loss during hovering, the rate
at which its heart supplies oxygen, and the maximum stresses in its bones
and muscles.

The heat loss estimate is simple, if not altogether compelling. Muscles
turn chemical energy into mechanical energy at a 25% efÞciency rate. The
excess energy is dissipated as heat loss through the birdÕs surface area. The
heat transfer thus decreases at a rate proportional to (length)2. Hence, in
order to prevent the bird from overheating, the available power must also
be proportional to L2.

The oxygen supply estimate reduces to the consideration of the time rate
of change of the volume of blood delivered by the heart. This volumetric
rate is proportional to the cross-sectional area of the birdÕs blood vessels.
Thus, we again Þnd that the available power is proportional to L2 because
it is proportional to the oxygen ßow, which is in turn proportional to the
rate of blood delivery.
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The maximum stress estimate begins with the assessment of the work
done by a contracting muscle. By the principle of conservation of energy
that work must equal the resulting change in the kinetic energy of the limb
moved by the muscleÕs contraction. Thus,

muscle force× contraction ∝ limb mass× v2, (3.13)

where v is now the speed of the moving limb. Since the force in the muscle is
limited by the maximum tensile strengths of the birdÕs muscles and tendons,
it must be proportional to L2 as representative of the cross-sectional area
of those muscles and tendons.

Now the muscle contraction is proportional to L, and the limb mass
to L3, so that eq. (3.13) tells us that the speed of the hovering bird is
independent of L or size. If this is true, the time it takes for a muscle to
contract would be found from the ratio L/v , or simply the length L. Then
the power exerted by the muscle is

power ∝ muscle force× contraction

time
∝ L2 × L

L
, (3.14)

so once again we Þnd that the available power is proportional to L2.

3.3.3 So There Is a Hovering Limit

We have seen in Section 3.3.1 that the power needed for ßight is propor-
tional to L7/2, while in Section 3.3.2 we showed that the power available to
the bird to sustain ßight is proportional to L2. Since the power needed to
hover increases so much faster with the bird size, it is clear that a limit
to hovering size must indeed exist.

Problem 3.8. ConÞrm the dimensional relationship of eq. (3.10).
Problem 3.9. Use dimensional analysis to conÞrm that power is

equal to the time rate of change of kinetic energy.
Problem 3.10. ConÞrm the dimensional relationship of eq. (3.12).
Problem 3.11. ConÞrm that eq. (3.13) does show that v is independ-

ent of L.

3.4 Size and Function–II: Hearing and Speech

Human hearing and speech are areas of human physiology where scaling
has interesting and important effects. Size, shape, and function are clearly
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Figure 3.10 A cross-section of the human ear,
including the eardrum, which is the mechanism with
which we hear (from Encyclopedia Britannica
Online, www.brittanica.com, 1997).

intertwined in the ear and eardrum (Figure 3.10), and in the vocal cords and
larynx, that is, the Òvoice boxÓ that contains the vocal cords (Figure 3.11).
We are inclined to wonder about scale effects in hearing because we know
that humans hear sounds in the range of 20 to 20,000 Hz (or hertz or
cycles per second), dogs hear sounds that have frequency components up
to 50,000 Hz, and bats hear sounds as highs as 100,000 Hz. The unit hertz
is named after the acoustician Gustav Ludwig Hertz (1887Ð1975). Since
larger animals seem to have more limited frequency ranges, it is worth
exploring whether size could play a role in these differences.

3.4.1 Hearing Depends on Size

The eardrum is just one part of a complex hearing apparatus (see
Figure 3.10) that starts at the outer ear and goes through the cochlea to
the auditory nerve that transmits signals to the brain for interpretation.
When a sound is generated by a source, the result is that air (or another
mediumÕs) particles immediately adjacent to the source are set into motion,
creating the acoustic signals that are transmitted through the intervening
air (or medium, or media) to the receiverÕs ear. The eardrum itself con-
verts the mechanical vibration of the ÒincomingÓ air particles that form
the acoustic signal into a mechanical vibration of three bonesÑcalled the
hammer, anvil, and stirrupÑthat in turn carry the vibratory signal into the
inner ear. Eventually, the inner ear converts these mechanical signals into
electrical signals that are transmitted through the nervous system to the
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Figure 3.11 A cross-section of
the human larynx or “voice
box” showing the vocal cords
that are the mechanism with
which we speak
(www.sfu.ca/∼saunders/L33098/
L5/L5Fset.html, 2002, by
courtesy of R. Saunders, Simon
Fraser University, Burnaby,
British Columbia, Canada).

brain by way of the organs of Corti. As the Þrst pickup of the incoming
mechanical signal, it is important that the eardrum remain quite stiff in
order to pick up and accurately reproduce the higher frequencies of that
signal.

In mechanical terms, the eardrum is a stretched membrane, much like
a trampoline. Like every other mechanical device, the eardrum has natural
frequencies at which it can vibrate freely (and indeÞnitely, if only there
were no damping!). As we will see in Chapter 8, an elastic system responds
just like a linear spring when it is forced or excited at frequencies below
the lowest natural frequency, sometimes called the fundamental frequency.
Thus, if we want the eardrum to be stiff, we want its fundamental frequency
to be very high. It turns out that the fundamental frequency of a stretched
circular membrane of radius, r , and thickness, h, is given by

fmembrane = 2.40

2πr

√
F

ρh
, (3.15)

where F is the tensile (stretching) force per unit length of the membrane
circumference and ρ is the mass density of the material of which the mem-
brane is made. It is easily veriÞed that the dimensions of the membraneÕs
fundamental frequency are 1/(time) or 1/T, which is quite appropriate for
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frequency. However, it is also interesting to note in eq. (3.15) that the fun-
damental frequency varies inversely with the radius, r , of the membrane
(or eardrum). So, for similar values of the tensile force, F , and the mass
density, ρ, we would expect the range of hearing to extend into higher
frequencies for smaller animals, and this is just what we have seen in the
hearing ranges of humans, dogs, and bats.

3.4.2 Speech Depends on Size

A similar situation exists with regard to human vocal cords and voice boxes.
We know from everyday experience that men generally have deeper, lower-
pitched voices than do women, and we are also accustomed to the facts that
birds chirp and bears growl. So we are inclined to imagine that the sound
of speech would scale with size.

The mechanism that creates speech is the forced vibration of the vocal
cords as air is expelled from the lungs and pushed past (and through) the
cords in the larynx or voice box (viz., Figure 3.11). In order to develop
and produce volume at low frequencies, the vocal cords must be able to
vibrate at low frequencies, and the voice box must be able to amplify the
low-frequency signals produced by the vocal cords.

The vibration characteristics of vocal cords can be modeled just as we
would model the vibration of violin or piano strings, whose fundamental
frequency is given by

fstring = 1

2l

√
F

ρA
, (3.16)

where l is the stringÕs length, A its cross-sectional area, F is the tensile force
applied to the string, and ρ its mass density. Note the very strong resemb-
lance between eqs. (3.15) and (3.16). Further, we see that this frequency
(3.16) scales inversely with both the string length and its mass density.
Thus, a larger animal with longer and more dense vocal cords will make
sounds that have components at lower frequencies.

We can also look at the fundamental frequency of an acoustic cavity as
a model for the larynx. Such a cavity, which we examine in more detail
in Chapter 8, is also called an acoustic resonator and it has a fundamental
frequency given by [see eq. (8.47)]

fcavity = c0

2π

√
A

lV0
, (3.17)

where A and l are, respectively, the area and the length of the ÒneckÓ leading
into an acoustical cavity of volume V0 that is Þlled with a gas in which
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sound waves travel at a speed c0 (see Figure 8.7). Clearly, the fundamental
frequency of the cavity scales inversely with the cavityÕs volume. So once
again we Þnd that larger humans and animals have deeper voices than do
their smaller counterparts.

Problem 3.12. What is the hearing range of an elephant? A whale?
How do these ranges compare with those of humans?

Problem 3.13. ConÞrm that the dimensions of eq. (3.15) are 1/T.
Problem 3.14. ConÞrm that the dimensions of eq. (3.16) are 1/T.
Problem 3.15. ConÞrm that the dimensions of eq. (3.17) are 1/T.

3.5 Size and Limits: Scale in Equations

In Section 3.3, while discussing size and function, we found that there is
an upper limit to the weights of hovering birds. This limit is due to the
fact that birds could not supply enough power to sustain hovering ßight as
they grew bigger and heavier. Thus, the birdsÕ ability to hover was limited
by the power available to them. Limits occur quite often in mathematical
modeling, and they may control the size and shape of an object, the number
and kind of variables in an equation, the range of validity of an equation,
or even the application of particular physical modelsÑor Òlaws,Ó as they
are often called.

Modern electronic components and computers provide ample evid-
ence of how limits in different domains have changed the appearance,
performance, and utility of a wide variety of devices. The bulky radios
that were made during the 1940s, or the earliest television sets, were very
large because their electronics were all done in old-fashioned circuits using
vacuum tubes. These tubes were large and threw off an enormous amount
of heat energy. The wiring in these circuits looked very much like that in
standard electrical wiring of a house or ofÞce building. Now, of course, we
carry television sets, personal digital assistants (PDAs), and wireless tele-
phones on our wrists. These new technologies have emerged because we
have learned to dramatically change the limits on fabricated electrical cir-
cuits and devices, and on the design and manufacturing of small mechan-
ical objects. And this is true beyond electronics. The scale at which surgery
is done on people has changed because of our ability to ÒseeÓ inside the
human body with greater resolutionÑwith increasingly sophisticated scans
and imagers, as well as with Þber-optic television camerasÑand to design
visual, electronic, and mechanical devices that can operate inside a human
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eye, and in arteries and veins. In the emerging Þeld of nanotechnology we are
learning to engineer things at the molecular level. Thus, our mathematical
models will change, as will the resulting devices and Òmachines.Ó

3.5.1 When a Model Is No Longer Applicable

As we hinted in Section 3.1, one interesting example of the interaction of
scale and limits is Newtonian mechanics. We are accustomed to taking the
masses or weights of objects as constants in our everyday lives and in our
normal engineering applications of mechanics. We do not expect a box of
candy to weigh any more whether we are standing still, riding in a car at
120 km/hr (75mph), or ßying across the country at 965 km/hr (600 mph).
Yet, as we noted in Section 3.1, according to the general theory of relativity,
the mass of a particle moving at speed, v , is given as a (dimensionless)
fraction of the rest mass, m0, by

m

m0
= 1√

1− (v/c)2
, (3.18)

where c is the speed of light (3× 108 m/s = 186,000 mi/sec). For the box
of candy ßying across the country at 965 km/hr = 268 m/s, the factor in
the denominator of the relativistic mass formula (3.18) becomes√

1−
(v

c

)2 =
√

1− 7.98× 10−13 ∼= 1− 3.99× 10−13 ∼= 1. (3.19)

Clearly, for our practical day-to-day existence, we can neglect such relati-
vistic effects. However, it remains the case that Newtonian mechanics is a
good model only on a scale where all speeds are very much smaller than the
speed of light. If the ratio v/c becomes sufÞciently large, the mass can no
longer be taken as the constant rest mass, m0, and Newtonian mechanics
must be replaced by relativistic mechanics.

3.5.2 Scaling in Equations

In certain situations, scaling may shift limits or perhaps points on an
objectÕs boundary where boundary conditions are applied. For example,
suppose we want to approximate the hyperbolic sine function,

sinh x = 1

2
(ex − e−x). (3.20)

We know that for large values of x , the term ex will be much larger than the
term e−x . The approximation problem is one of deÞning an appropriate
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criterion for discarding the smaller term, e−x . For dimensionless values
of x greater than 3, the second term on the right-hand side of eq. (3.20),
e−x , does become very small (less than 4.98 × 10−2) compared to ex for
x = 3, which is 20.09. Hence, we could generally take sinh x ∼= (½)ex . All
we have to do is decide on a value of x for which we are willing to accept
the approximation e2x − 1 ∼= e2x .

We can also approach this problem by introducing a scale factor, λ, after
which we can look for values of x for which we can make the approximation

sinh(x/λ) ∼= 1

2
ex/λ. (3.21)

Putting a scale factor, λ, in the approximation of eq. (3.21) obviously means
that it will affect the value of x for which that approximation is acceptable.
Now the comparison is one in which we want

e2x/λ − 1 ∼= e2x/λ. (3.22)

For λ = 1, the approximation is good for x ≥ 3, while for λ = 5 the
approximation works for x ≥ 15. Thus, by introducing the scale factor λ
we can make the approximation valid for different values of x because we
are now saying that e−x/λ is sufÞciently small for x/λ ≥ 3. Changing λ
has in effect changed a boundary condition because it has changed the
expression of the boundary beyond which the approximation is acceptable
to x ≥ 3λ.

Recall that functions such as the exponentials of eqs. (3.21) and (3.22),
as well as sinuosoids and logarithms, are transcendental functions. Tran-
scendental functions can always be represented as power series, as we will
detail in Section 4.1.2. For example, the power series for the exponential
function is:

ex/λ = 1+ x

λ
+ 1

2!
(x

λ

)2 + 1

3!
(x

λ

)3 + · · · + 1

n!
(x

λ

)n + · · · (3.23)

It is clear that the argument of the exponential must be dimensionless
because without this property eq. (3.23) would not be a rational equation.
Further, we could not calculate numerical values for the exponential func-
tion, or any other transcendental function, if its argument was not dimen-
sionless. The presence of a scale factor in eq. (3.22) makes the exponentialÕs
argument dimensionless, and so numerical calculations can be performed.

In addition, the scale factor, λ, often represents a characteristic aspect
of the problem being modeled, so that a ratio such as x/λ becomes a use-
ful measure of whether something is truly large or small. For example,
the hyperbolic sinusoid in eq. (3.20) might describe the deßection or
downward displacement of a catenary cable as a function of its length.
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The variable x could be a coordinate measured along the projected cable
length and λ could represent its total projected length, which could be
regarded as the cableÕs characteristic length.

3.5.3 Characteristic Times

We often see rate effects in Þrst-order differential equations (a brief review
of which can be found in Section 5.2.2). For example, it will be shown that
a charged capacitor draining through a resistor produces a voltage drop
V (t ) at a rate proportional to the actual value of the voltage at any given
instant. The mathematical model would be:

dV (t )

dt
= −λV (t ). (3.24)

We can rewrite this equation in the equivalent form

dV (t )

V (t )
= −λdt . (3.25)

Now, in order for this rate equation to be a rational equation, the net
dimensions of each side of the equation must be the same. For eq. (3.25)
that means each side must be dimensionless. The left-hand side is clearly
dimensionless because it is the ratio of a voltage change to the voltage itself.
The right-hand will be dimensionless only if the scale factor, λ, has physical
dimensions such that [λ] = 1/T. We will soon see this below and then will
reconÞrm it when we solve the differential equation (3.24) in Chapter 5.

We can use the dimensionless product λt to derive a measure of the time
that it takes to discharge the capacitor being modeled. For example, we
could deÞne a decay time, often called a characteristic time, as the time it
takes for the voltage to decrease to a speciÞed fraction of its initial value.
Suppose we choose that speciÞed value to be 1/10. The characteristic or
decay time of the charged capacitor would then be

V (tdecay) ≡ V0

10
. (3.26)

How would we calculate tdecay ? As we will show in Chapter 6, it is easily
conÞrmed that the solution to the differential equations (3.24) and (3.25) is

V (t ) = V0e−λt , (3.27)

which in view of eq. (3.26) means that

λ ∼= 2.303

tdecay
. (3.28)
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Equation (3.28) simply says that the scale factor λ for the discharging
capacitor is inversely proportional to the characteristic (decay) time, and
that the voltage in the capacitor can then be written as

V (t ) ∼= V0e−2.303(t/tdecay ). (3.29)

Problem 3.16. Under what conditions is eq. (3.24) dimensionally
consistent?

Problem 3.17. ConÞrm that the voltage of eq. (3.27) does satisfy
eq. (3.24).

Problem 3.18. ConÞrm that eq. (3.28) is correct.

3.6 Consequences of Choosing a Scale

Since all actions have consequences, it should come as no surprise that
the acquisition of experimental data, its interpretation, and its perceived
meaning(s) generally can be very much affected by the choice of scales for
presenting and organizing data.

3.6.1 Scaling and Data Acquisition

Scales affect the ways in which data is taken during experiments. Care-
fully chosen scales can reduce errors, save time and money, and they can
highlight important details.

Consider, for example, the simple apparatus shown in Figure 3.12, which
can be used to determine the rotational inertia, Irot , (the second moment
of inertia of the mass around an axis through its centroid or center) of
the wheel shown as it turns or spins around an axis through its center.
This experiment uses a falling weight connected to the wheel by a string to
produce a torque that, in turn, causes the wheel to rotate. That torque, τ ,
is related to the rotational inertia Irot by

Irot = τ

α
, (3.30)

where α is the angular acceleration of the wheel, measured in units of
radians per second squared (rad/sec2). As we describe the inßuence of scale
on experimental observation, we will focus on the angular acceleration as
the important parameter through which we can determine Irot . We conduct
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the experiment itself by letting the falling weight cause the wheel to spin,
during which we measure or read the speed, v , of any point on the wheel
both as the experiment begins at some time t = t0, and at a later time
(t = tf ) that denotes the end of the experiment. The angular acceleration
is then calculated in terms of the wheelÕs radius, R, and the measured speeds
and measurement times as:

αexp = (vf − v0)

R(tf − t0)
, (3.31)

where the speeds v0 and vf are measured at the times t0 and tf , respectively.
Clearly, the time scale for this experiment is the time interval tf − t0. It

will control the amount of error between the experimentally determined
value of Irot and its actual (or theoretically calculated) value.

We know that the wheel is set into motion by releasing or dropping the
falling weight, because that action pulls the string taut and causes the wheel
to start spinning. As the weight falls, the wheel rotates at an increasingly
faster rate. Since the wheel is at rest when we initiate each experimental
run, we can safely take t0 = v0 = 0. Then the values of αexp determined
experimentally are found from eq. (3.31) as

αexp = vf

Rtf
. (3.32)

Now, while we have argued above that the apparatus shown in Figure 3.12
produces a constant acceleration, that is not exactly true. Since we are
starting from the state t0 = v0 = 0, static friction must be overcome as the
wheel starts from rest at the beginning of each run of the experiment. After
a short while, the wheel motion does, in fact, settle into spinning with a
fairly constant acceleration. But what exactly is a Òshort whileÓ? How do we
know the correct value of tf at which we can terminate each experimental
run? Is 2 seconds enough time? Or do we need 4 seconds, or a still longer
time?

In Table 3.1 we show some data obtained in one run of this experiment.
Note that the number of revolutions or spins of the wheel goes up rapidly as
time elapses, as does the speed of rotation. Further, and most importantly,
if we calculate the angular acceleration as it varies with time (or with the
estimated number of revolutions, a number that we can also count), we see
that αexp appears to approach a constant value (which means the torque
also approaches a constant value). Why is this so? It is so because when we
allow the experiment to run for a longer time (or through more turns of
the wheel), we are changing the time scale over which the drag due to static
friction has an inßuence. In a very short experiment, the time taken to
overcome static friction takes up a much larger percentage of the time scale
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Side view
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Figure 3.12 A simple piece of apparatus that
can be used to measure the rotational inertia of
a wheel of radius, R , as it spins around an axis
through its center.

of the experiment, and so it has a disproportionate inßuence. In a longer
experiment, conditions approach a steady state in which the predominant
effect is the torque applied by the falling weight, so the static friction
occupies an increasingly smallÑand negligibleÑpart of the experimentÕs
run time.

Table 3.1 The data taken in the experimental
determination of the rotational inertia of the wheel (as
shown in the apparatus of Figure 3.12), along with an
estimate of the actual number of revolutions that had
occurred when νf was measured.

tf (s)

Estimated
number of
revolutions

Measured
vf (m/s)

Calculated
αexp = vf /Rtf

(rad/s2)

2 1/5 0.55 0.55
6 2.4 2.47 0.82

10 7 4.48 0.90
20 30 9.50 0.95

100 790 49.68 0.99
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As another illustration of how scaling affects data acquisition, consider
the diagnosis of a malfunctioning electronic device such as an audio ampli-
Þer. Such ampliÞers are designed to reproduce their electrical input signals
without any distortion. The outputs are distorted when the input sig-
nal has frequency components beyond the ampliÞerÕs range, or when the
ampliÞerÕs power resources are exceeded. Distortion also occurs when an
ampliÞer component fails, in which case we must diagnose the failure to
identify the particular failed component(s).

A common approach to doing such diagnoses is to display (on an oscillo-
scope) the deviceÕs output to a known input signal. If the device is working
properly, we expect to see a clear, smooth replication of the input. One
standard test input is the square wave shown in Figure 3.13 (a). A nice

Square wave input

Square wave ouput on
time scale of 0.5 sec/division

Square wave ouput on
time scale of 0.5 msec/division

Square wave ouput on
time scale of 0.5 µsec/division

(a)

(b)

(c)

(d)

Figure 3.13 A square wave (a) is
the input signal to a (hypothetical)
malfunctioning electronic device.
Traces of the output signals are
shown at three different time
scales (i.e., long, short, shorter):
(b) 0.5 second/division;
(c) 0.5 millisecond/division; and
(d) of 0.5 microsecond/division.
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replication of that square wave is shown in Figure 3.13(b), and it seems
just Þne until we notice that the horizontal time scale is set at a fairly high
value, that is, 0.5 second/division. To ensure that we are not overlooking
something that might not show up on this scale, we spread out the same
signal on shorter time scales of 0.5 millisecond/division (Figure 3.13(c))
and 0.5 microsecond/division (Figure 3.13(d)), neither of which is the nice
sinusoid we originally thought. This suggests that the device is malfunc-
tioning. Had we not set the oscilloscope to shorter, more appropriate time
scales, we might have come to an erroneous conclusion.

3.6.2 Scaling and the Design of Experiments

Scale also affects the ways in which experiments are designed, especially
when the context is that of ensuring that models replicate the prototypes
or ÒrealÓ artifacts that they are intended to stand for or model. This aspect
of scaling is, as we will now show, intricately intertwined with the notions
of dimensional analysis discussed in Chapter 2.

Scale models or reproductions of physical phenomena or devices are
usedÑas they have been for quite some timeÑto do experiments and
study behavior for which a comprehensive analytical model is not available.
Often such studies are done because a laboratory experiment is more easily
developed than is a full-scale experiment. For example, it is easier to study
the vibration characteristics of a model of a proposed bridge design than
it is to build the designed bridge and hope for the best, just as it is easier
to test models of rockets in simulated spaceßight or models of buildings
in simulated earthquakes or Þres. But such experimental models wonÕt be
of much use unless some preliminary analysis is done and clear physical
hypotheses are developed in advance. We will illustrate how is that done
with one simple example.

Consider a simple beam, such as the one shown in Figure 3.14.

P

L

wmp

Figure 3.14 Prototype and model of a simple
elastic beam of length, L, elastic modulus, E ,
and second moment of cross-section, I , as it
deflects an amount, wmp , at its center due to the
load of magnitude, P , applied there.
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We assume that it is known that the deßection, w(L/2), of the mid-
point of the beam when concentrated load P is applied at the same point
is a function of the load and three other parameters, that is,

w(L/2) ≡ wmp = f (P , EI , L), (3.33)

where L is the beamÕs length, E is the elastic modulus of the beam material,
and I is the second moment of its cross-sectional area. The product EI
is commonly called the beamÕs bending stiffness. This example has two
dimensionless groups (see Problem 3.19):


1 = wmp

L
, 
2 = PL2

EI
. (3.34)

Thus, it follows that
wmp

L
= f

(
PL2

EI

)
. (3.35)

Suppose we want to determine the functional form of eq. (3.35) for a
beam, which we will call the prototype beam, but that the beam is too big
and heavy, and the load P too large, for us to do an experiment on the beam
itself. We propose instead to test a model beam. But then we immediately
face a question: How should the properties of the model beam relate to
those of the prototype? The answer lies in the results obtained by applying
the principles of dimensional analysis: The model properties and prototype
properties must be such that the two dimensional groups have the same
numerical values for both model and prototype. Stated in mathematical
terms, with subscripts ÒmÓ for model and ÒpÓ for prototype,

(
1)m = (
1)p , (
2)m = (
2)p . (3.36)

Thus, to a certain extent we can scale the geometry, the material, or the
load for our own convenience, but we cannot scale all of the independ-
ent variables independently. In order to preserve the property of complete
similarity between model and prototype, we must preserve the equality
between model and prototype of each dimensionless group needed to
deÞne a particular problem.

Applying the general similarity rule of eq. (3.36) to the speciÞc case of
the beam whose dimensionless groups are given in eq. (3.34), we Þnd that
we can preserve complete similarity by requiring that

(wmp

L

)
m
=
(wmp

L

)
p

,

(
PL2

EI

)
m
=
(

PL2

EI

)
p

. (3.37)

Having established in eq. (3.37) the overall conditions needed for complete
similarity, we can now go into further detail to see both what we must do
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and what we may do in terms of scaling factors deÞned for each of the
problemÕs variables, that is, for the factors

nw =
(
wmp

)
p(

wmp
)

m

, nP = Pp

Pm
, nE = Ep

Em
, nI = Ip

Im
, nL = Lp

Lm
. (3.38)

Thus, we see that the scaling factors in eq. (3.38)Ñwhich should not be
confused with the graphical scale factors, λ, introduced in Section 3.5.2Ñ
are simply ratios of the values of each of the variables in the prototypes to
the values of the same variable in the model. Equation (3.38) shows that
we have Þve such scaling factors for this problem, while eq. (3.37) shows
that there are two overall similarity conditions that must be satisÞed. We
can, in fact, write the similarity conditions (3.37) in terms of the scaling
factors (3.38) by straightforward substitution:

nw

nL
= 1,

nP n2
L

nE nI
= 1. (3.39)

So, if we choose a length scale (nL) for this problem, we have also chosen
a deßection scale (nw ) by the Þrst of eq. (3.39). However, this means that
we may still freely choose two of the three remaining scaling factors (nP ,
nE , and nI ). If we chose the scaling factors of the elastic modulus (nE )
and of the moment of inertia (nI ) because we had appropriate materials or
small beams lying around our laboratory, then the single remaining scaling
factor nP would be determined by the second of eq. (3.39):

nP = nE nI

n2
L

. (3.40)

Suppose we wanted to model the deßection of a steel beam by doing experi-
ments on a small model made of balsa wood. Assume a typical laboratory
scenario in which the length scale is twenty-to-one, that is, nL = 20, the
scaling factor of the moments of inertia is about nI = 1000, and that the
scaling factor of the moduli of elasticity is approximately nE = 50. For
a similar experiment, we would then expect that the resulting deßection
would be one-twentieth of the actual deßection when we apply a load to
the model that is equal to the anticipated actual load divided by 125.

Note that this introduction to the consequences of scaling in modeling
is just that, a very short and very limited introduction. Clearly, not all
experiments are so easily analyzed or scaled, and so there are many more
issues to be explored in a comprehensive look at scaling in the design of
experiments.
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3.6.3 Scaling and Perceptions of Presented Data

The scales used to present modeling ÒresultsÓ also signiÞcantly inßuence
how such data is perceived, no matter whether those models are analytical
or experimental in nature. Indeed, individuals and institutions have been
known to choose scales and portrayals to disguise or even deny the realities
they purport to present. Thus, whether by accident or by intent, scales can
be chosen to persuade. While this is more of a problem in politics and the
media than it is in the normal practice of engineering and science, it seems
useful to touch on it brießy here since the underlying issue is a consequence
of scale.

We start by reconsidering some calculations we have already performed
(in Section 3.5.2) to show how we can use a scale factor to effectively move
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Figure 3.15 Plots of sinh (x /λ) (solid line) and its one-term exponential
approximation (1/2) exp (x /λ) (dashed line): (a) for λ = 1, 5, with length
scale 0 ≤ x ≤ 3.0; (b) for λ = 1, 5, with length scale 0 ≤ x ≤ 60; and
(c) for λ = 1, with length scale 0 ≤ x ≤ 0.25.
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a boundary. In Figure 3.15(a) we display plots of sinh(x/λ) (solid line)
and its one-term exponential approximation (dashed line). We now see
what we have previously described, namely, for λ = 1 the approximation
is good for x ≥ 3, while for λ = 5 the approximation works for x ≥ 15.
The scale factor λ makes the approximation valid for different values of x
because of the argument that e−x/λ can be neglected when compared to 1
for x/λ ≥ 3.

The same two functions have been redrawn in Figure 3.15(b) where
the horizontal scale has been very much contracted, as a result of which
we donÕt see any difference between the hyberbolic sinusoid and its ele-
mentary approximation. That is, it looks like sinh (x/λ) and 1/2ex/λ

are the same for all values of x , when we know that is not the case. In
other words, we have lost (or hidden) some information about the beha-
vior at small values of x . To emphasize this, we show in Figure 3.15(c)
a plot for the case λ = 1 with a much-elongated horizontal scale where,
as a result, the difference between the two functions is very much
exaggerated.

Lastly on graphical display, scaling, and perception, we show in Figures
3.16 and 3.17 two illustrations of the consequences of scale in contexts
somewhat beyond the normal professional concerns of engineers and sci-
entists. We show both examples because they use the same technique
of carefully choosing a scale in a Þgure in order to present data out
of context. In Figure 3.16(a) we show a rather dated picture of trafÞc
deaths in the state of Connecticut during the time interval 1956Ð1957,
and we see that a sharp drop in trafÞc deaths occurred then. But, was
that drop real? And, in comparison to what? It turns out that if more
data are added, as in Figure 3.16(b), we see that the drop followed a
rather precipitous increase in the number of trafÞc fatalities. Further, if
we added data from adjacent states and normalized the number of deaths
against a common base, as shown in Figure 3.16(c), we then Þnd that
the numbers of ConnecticutÕs trafÞc fatalities was similar to those of its
neighbors, although the impact of the stricter enforcement is still visible
after 1955.

Similarly, one of the most often shown graphics in the Þnancial pages
of newspapers, or in their televised equivalents, are graphics such as that
shown in Figure 3.17 (see p. 65). Here, the immediate sense conveyed is that
the bottom has dropped out of the market because the scale used on the
ordinate (or y- or vertical axis) has been so foreshortened that it includes
only one weekÕs trading activities, Thus, a decline of a few percent in a
stock market barometer such as the Dow Jones Industrial Average (DJIA)
is made to look like a much steeper declineÑespecially if the curve itself is
drawn in red ink!
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Connecticut Traffic Deaths,
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225

250

275

300

325

1951 1953 1955 1957 1959

Before stricter
enforcement

After stricter
enforcement

Connecticut Traffic Deaths,
Before (1955) and After (1956)
Stricter Enforcement by the Police
Against Cars Exceeding Speed limit

325(a) (b)

(c)

300

275

1955 1956

New York 

Connecticut
Massachusetts

Rhode Island

8

10

12

14

16

1951 1953 1955 1957 1959

Traffic Deaths per 100,000
Persons in Connecticut,
Massachusetts, Rhode Island,
and New York, 1951–1959

Figure 3.16 Plots of traffic fatalities in the state of Connecticut,
showing the dangers of truncating scales and deleting comparative
data: (a) Connecticut data for 1955–56; (b) Connecticut data for
1951–59; and (c) normalized data for Connecticut and three
neighboring states for 1951–59 (from Tufte, 1983).

Problem 3.19. Show that the deßection wmp of a beam with bend-
ing stiffness EI, length L, and under a concentrated
load P is governed by the two dimensionless groups
in eq. (3.34).

Problem 3.20. Why is the torque, τ , in the apparatus of Figure 3.12
a constant?

Problem 3.21. Expressed in terms of the wheelÕs geometric and
gravitational properties, what is the magnitude of the
torque in Problem 3.20?

Problem 3.22. ConÞrm that eq. (3.30) is dimensionally correct.
Problem 3.23. ConÞrm that eq. (3.31) is dimensionally correct.
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Problem 3.24. Calculate and conÞrm the estimated number of
revolutions in the last column of Table 3.1.

Problem 3.25. ConÞrm that eq. (3.39) is the correct representation
of eq. (3.37) in terms of the Þve scaling factors of a
simple beam.
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Figure 3.17 A plot of the performance of the New York Stock
Exchange during 13–15 May 2002, as exemplified by that
universally-cited barometer, the Dow Jones Industrial Average (DJIA)
(www.bigcharts.com, 2002).

3.7 Summary

Continuing the discussion of issues involving dimensions that began in
Chapter 2, here we have focused on very important effects of scale. We
have shown how scaling effects inßuenced the growth of cathedrals and
large churches, and we have demonstrated how size affects function in the
ability of birds to hover and in peopleÕs ability to hear and to speak. In
fact, we have shown that the nature of hearing and speech in animals is
determined in large part by the relative size of the relevant parts of their
anatomy.
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We have also discussed the fact that scaling has a signiÞcant effect on
experiments, both in terms of how data is acquired and how it is inter-
preted. The choice of scale(s) for experiments is a crucial part of the design
of experiments. More generally, we have seen that the way that data is scaled
for presentation can signiÞcantly inßuence how people perceive the mean-
ing of that data. This is also a very important part of modeling because it
speaks directly to the perceived credibility of the results of any modeling
endeavor.
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3.9 Problems

3.26. Formulate a hypothesis to explain why a wood pigeon and a buzzard
seem to have such different ratios of Wfm/Wb in Figure 3.2.

3.27. Show that the equation that describes the log-log plot of Figure 3.7
can be found to be h ∼= 1.23 l0.68, where h and l are, respectively, the
nave height and church length rendered dimensionless by dividing
each by 1 ft.

3.28. Using reasoning similar to that which brought us to eq. (3.13), show
that the maximum speed at which animals can run is independent
of size.

3.29. The velocity of blood in the aorta is related to the difference in
pressure between the heart and the arteries. Find the relation-
ship between the velocity of the blood and the pressure difference.
(Hint : Use the work-energy theorem as we did for bird hovering in
Section 3.3.2.)

3.30. The stilt, a little long-legged bird, was described in Gulliver’s Travels
as weighing 4.5 ounces and having legs that are 8 in long. A ßamingo
has a similar shape and weighs 4 lb. Apply scaling arguments to show
that ßamingoÕs legs should be about 20 in long (as they actually are!).

3.31. Given that a robin weighs about 2 ounces, could we scale the length
of its legs from the stilt data given in Problem 3.30? Explain your
answer.

3.32. A certain cucumber was found to have cells that divided when they
had grown to 1.5 times the volume of ÒrestingÓ cells. Cells normally
divide so that the ratio between their surface and their mass remains
constant. Is the cucumber described a ÒnormalÓ cucumber?

3.33. Find the range of values of the variable x for which the approxi-
mation

cosh(x/λ) ∼= 1

2
ex/λ

is acceptable, for scaling factors λ = 1 and λ = 6. Plot both
functions for each of the two scaling factors.
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3.34. An experiment to determine the natural or fundamental period
of oscillation of a simple spring-mass system (see Figure P3.34) is
set up as follows. A spring of stiffness k is Þxed at one end and
connected to a mass m at its other, with the mass being able to
move along an ideal, frictionless air track. The mass is displaced a
distance x0 from its initial resting position, after which it oscillates
along the air track around that initial position. The time needed for a
complete oscillationÑthat is, the periodÑis measured several times
for several periods in succession, with the results being compared to
the theoretical formula for the period, T :

T = 2π

√
m

k
.

m

x0

Air track

k

Figure P3.34 An experimental device for
determining the period, T, of a spring-mass system,
wherein the mass, m, moves on an ideal, frictionless
air track.

Assuming that k and m are known, and that the timer used to
measure the period is accurate to within ±1%. What are the
possible pitfalls that could prevent the successful experimental
determination of T ?

3.35. When the structural elements called beams vibrate freely, their
natural frequencies,ω, depend on a beamÕs mass density, ρ, its mod-
ulus of elasticity, E , and its length, l , depth, h, and cross-sectional
area, A. If a model and prototype are to be built of the same material
and tested, and their lengths are scaled in the ratio 1:5, how will
their natural frequencies relate? (Hint : Use dimensional analysis to
determine the various dimensionless parameters that relate ω to the
various beam properties.)

3.36. A steel beam of length of 20 cm is to be used to model a prototype
timber beam whose span is 3.6 m.

(a) Verify that the dimensionless group containing the load, the
modulus, and the length is P/EL2.
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(b) If the timber beam is to carry a load of 9000 N at a point 1.5 m
from the left end, what load must be applied to the model to
determine whether the prototype can carry its intended load?
(Assume that the load-carrying capacity is the only behavior of
interest here.)

3.37. The data given in the table immediately below were recorded as the
growth of a colony of bacteria was observed. (a) Plot this data as a
function of time. (b) Write an equation that expresses the bacterial
population as a function of time.

Time (min) Population (p)× 106

0 10
5 15

10 22
20 50
30 110
40 245
50 546
60 1,215
70 2,704
80 6,018
90 13,394

100 29,810


