
6
Traffic Flow Models

People like to drive, especially in the United States. In fact, we can often
tell where people come from by how they refer to highways: people on
America’s east coast talk about taking the turnpike (or the ‘pike) or the
interstate, while on the west coast we get on the freeway or we take the
5 or the 101, referring to a particular highway by its number. In order
to design the roads and the cars that enable and facilitate such personal
transportation, we model both the behavior of individual cars with their
drivers in a (single) line of autos, and that of groups of cars in one or more
lanes of traffic. However, our concern is not with modeling the ergonomics
of operating a car. Rather, we focus on the interactions of autos on single
highway lanes, both individually and in dense lines.

6.1 Can We Really Make Sense of Freeway

Traffic?

No matter how we refer to traffic arteries, the flow of traffic on them is
modeled, analyzed, and predicted with traffic flow theory, which we now
detail at two levels. The macroscopic modeling of traffic assumes a suffi-
ciently large number of cars in a lane or on a road such that each stream
of autos can be treated as we would treat fluid flowing in a tube or stream.
Thus, to maintain the biological metaphor, traffic flow is treated as a flow
of a fluid field in an artery. Macroscopic models are expressed in terms of
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152 Chapter 6 Traffic Flow Models

three gross or average variables for a whole line of traffic: the number of cars
passing a fixed point per unit of time, called the rate of flow ; the distance
covered per unit time, the speed of the traffic flow ; and the number of cars in
a traffic line or column of given length, which we identify as the traffic dens-
ity. The relationship between the speed and the density is embodied by mac-
roscopic modelers in a plot of these two variables called the fundamental
diagram. We also invoke the continuum hypothesis (viz. Section 4.7.2) to
confirm that it is appropriate to (mathematically) treat the traffic as a field.

The second level of traffic modeling, microscopic modeling, addresses
the interaction of individual cars in a line of traffic. Microscopic models
describe how an individual follower car responds to an individual leader
car by modeling its acceleration as a function of various perceived stimuli,
which might be the distance between the leader and follower cars, the rela-
tive speeds of the two cars, or the reaction time of the operator of the
follower car. Car-following models come in several varieties, and they can
be used to construct the speed-density curves that are the underpinning of
macroscopic modeling. Such speed-density plots, supported by data taken
from real traffic arteries, enable traffic experts to model and understand
road or freeway capacity as a function of traffic speed and density—even
if everyday drivers feel they do not fully “understand” what is happen-
ing around them. (The microscopic models are also used to support the
modeling of vehicular control, that is, to implement control strategies that
enable lines of traffic to maintain high flow rates at high speeds. However,
we will not delve into control theory and its applications here.)

We will start our brief overview of traffic modeling at the macroscopic
level, applying conservation principles for cars aggregated into a field (or
sufficiently large collection of cars) to define the fundamental diagram for
the flow of traffic on a highway populated with multiple vehicles. Then
we will examine how the continuum hypothesis influences our view of
individual cars (and drivers), as a guide to developing car-follower models
that model the interaction between a single car as its driver reacts to another
auto immediately ahead. These car-follower models are then used to derive
the speed-density relationships that allow us to put specific models and
numbers into the more general macroscopic traffic flow theory.

6.2 Macroscopic Traffic Flow Models

We start by asserting the validity of an analogy, namely, that the flow of aWhy?

stream of cars can be modeled as a field, much as we would model the flow
of a fluid. Thus, the collection of cars taking the 10 east out of Los Angeles
on any given evening is mathematically similar to the flow of blood in an
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artery or water in a home piping system. We want to relate the speed of Find?

a line of traffic to the amount of traffic in that line (or lane). We use three
variables to describe such traffic flows:

• the rate of flow, q(x , t ), measured in the number of cars per unit time;
• the density of the flow, ρ(x , t ), which is the number of vehicles per

unit length of road; and
• the speed of the flow, v(x , t ).

How are these three variables related?

6.2.1 Conservation of Cars

We can provide one answer to the foregoing question by applying the How?

conservation principle embodied in eqs. (1.1) and (1.2) to traffic moving
(in one direction) along an arbitrary stretch of a road. The conservation
principle states that the change in the number of cars within that stretch
of road results from the flow of traffic into and out of that road inter-
val, and from the generation or consumption of cars within the interval.
Notwithstanding the occasional pictures we have all seen of horrific mega- Assume?

accidents that occur during severe fogs or major storms, we will (safely)
assume that cars are neither generated nor consumed within that road
interval.

Thus, imagine a coordinate, x , along a particular stretch or interval
of road under consideration that has endpoints defined by x = x and
x = x +�x . The number of cars within this road interval of length �x is
given by �N (x , t ). Given our assumption that we will neither generate or
consume cars, the conservation principle of eq. (1.2) states that the change
in the number of cars within the interval �N (x , t ) during a time interval
�t is, in the limit, equal to the rate of traffic flow, q(x , t ):

q(x , t ) ≡ lim
�t→0

�N (x , t )

�t
. (6.1)

The change in the number of cars within the road interval, �N (x , t ), is
simply the difference between the number of cars going in and out of that
stretch of road at each end, N (x , t ) and N (x +�x , t ), respectively:

�N (x , t ) = N (x , t )− N (x +�x , t ), (6.2)

If �x denotes the length of road interval that is traveled during the time,
�t , the statement of conservation of cars (6.1) can also be written as

q(x , t ) = lim
�t→0

�N (x , t )

�x

(
�x

�t

)
, (6.3)
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where the fraction introduced in eq. (6.3) is the speed of the traffic, v(x , t ),
in the interval:

v(x , t ) =
(
�x

�t

)
. (6.4)

Equations (6.2) and (6.4) are now substituted into the conservation of cars
(6.3) to yield

q(x , t ) =
(

lim
�x→0

N (x , t )− N (x +�x , t )

�x

)
v(x , t ). (6.5)

Note that the limit in eq. (6.5) is now taken as�x→ 0, and that its dimen-
sions correspond to the number of vehicles per unit length of road, which
we define as the density of the traffic flow :

ρ(x , t ) ≡ lim
�x→0

N (x , t )− N (x +�x , t )

�x
. (6.6)

Thus, eq. (6.5) can be rewritten for the last time to cast the principle of
conservation of cars in the form

q(x , t ) = ρ(x , t ) v(x , t ). (6.7)

Beyond preserving the notion that “what goes in must go out,” what does
eq. (6.7) mean? First, we note that the equation is dimensionally consistent
and correct (see Problem 6.1). Second, we note that eq. (6.7) can be shown
to make “physical” sense by a rather simple argument derived by looking
at two different ways of counting the number of cars passing a (specified)
point on the road during a very small time interval.

One measure of the traffic count is that the number of cars,�N , passing
a point during a time interval, �t , is simply the product of the flow rate,
q, and the time interval: �N = q�t . The second measure count assumes
that during the same small interval of time a car moving with a speed, v ,
will cover a distance, �x = v�t . The number of vehicles passing through
that distance is found from another simple product: of density, ρ, times
distance: �N = ρ�x . Hence, equating the two measures of the number
of cars passing a point yields the result

q�t = ρ�x , (6.8)

which is clearly an averaged version of eq. (6.7) that accords well with this
elementary physical reasoning (see Problem 6.2).

We also observe that the single equation (6.7) is expressed in three vari-
ables: q, ρ, and v . Therefore, it is of very limited use in this form without
substantial further information. However, it is clear that traffic density, ρ,
and speed, v , are the two fundamental traffic variables because we can
determine the rate, q, at which traffic flows by inserting them into eq. (6.7).
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Further, if we could relate speed directly to density, i.e., v = v(ρ), then we
could write a direct relationship between the traffic flow rate, q, and the
density, ρ:

q(ρ) = ρ v(ρ). (6.9)

As we will see in Section 6.2.3, plots of traffic flow rate, q, against density, ρ,
are so widely used in modeling traffic flow that they are identified under
the rubric of the fundamental diagram of road traffic.

Speed-density relationships (e.g., v = v(ρ)) are clearly central to our
understanding of traffic flow, so we turn to them next.

Problem 6.1. Confirm that eq. (6.7) is dimensionally correct.
Problem 6.2. Explain which variables were averaged, and how, over

the intervals of distance (�x) and time (�t ) in the
heuristic derivation of eq. (6.8)?

6.2.2 Relating Traffic Speed to Traffic Density

Even inexperienced drivers would agree that traffic speed and traffic density
are related. Drivers speed up when traffic is sparse, and they slow down
(perhaps involuntarily!) to clog up arteries when traffic is thick. Thus, we Assume?

are tempted to postulate that there is a direct relationship between traffic
speed and traffic density:

v = v(ρ). (6.10)

Let us now reason a bit further about this relationship to determine any
conditions that need to be applied to any particular functional form, v(ρ),
that might be proposed.

Building on the intuition just mentioned, we expect that a driver will Assume?

drive fastest, vmax, when the density is at its smallest value, ρ→ 0. The
speed decreases as the density increases, which is a statement about the
slope of the v versus ρ curve. Finally, traffic grinds to a halt, v = 0, Assume?

at some maximum or jam density, ρjam, presumably when the traffic is
bumper-to-bumper. We can summarize these experience-born intuitions
in mathematical requirements on the function, v(ρ):

v(ρ = 0) = vmax, (6.11a)

dv

dρ
≤ 0, (6.11b)

v(ρ = ρjam) = 0. (6.11c)
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Figure 6.1 A generic schematic of the variation
of traffic velocity with density. It displays the
endpoints, [(0, vmax) and (ρmax, 0), respectively],
and shows that the slope is always
non-positive, dv /dρ < 0, which results from our
experience that traffic speed drops off as traffic
density increases.

We can also display these results graphically, in the generic curve shown in
Figure 6.1. Note that the precise shape of the curve is unknown; only the
endpoint values and the sign of the slope are specified at this point.

The elementary modeling assumptions just outlined do not exhaust all
of the possibilities, although experience suggests that eqs. (6.10) and (6.11)
adequately reflect the behavior of traffic that is accelerating or decele-
rating. Models behind traffic speed-density relations will reflect human
behavior—rather than mechanical laws—because they reflect how drivers
respond to stimuli. That is, drivers can respond to perceived distances
between cars, to relative speeds, to the perceived density further down the
road, and so on. In fact, speed-density relations such as eq. (6.10) are
found both from empirical data and from the very stuff of the modeling of
car-following interactions that we address in Section 6.3.

6.2.3 Relating Traffic Flow to Traffic Density: The

Fundamental Diagram

From the viewpoint of the traffic engineer who is designing a road and allWhy?

of its facilities (including entrance and exit ramps, traffic signs and signals,
toll booths, etc.), the most relevant variable is the capacity (or maximum
flow rate) that the road system must accommodate, as reflected in its traffic
flow rate, q(x , t ). For macroscopic models we can take the speed to beGiven?
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homogeneous, which means that it does not explicitly depend on the road
coordinate, x , or on time, t . Then, we can write v = v(ρ), anticipating as
in eq. (6.9), that traffic flow ultimately depends only on the density, ρ.

We can now extend our qualitative analysis of the speed-density rela-
tionship (of Section 6.2.2) to the relationship between the traffic flow rate
and the density. Thus, because a driver’s fastest speed, vmax, occurs when
the density is at its smallest, ρ = 0, eq. (6.9) tells us that q(ρ = 0) = 0,
that is, that the flow rate is zero. Similarly, when traffic slows to a halt at its
maximum density, v(ρjam) = 0, eq. (6.9) tells us once again that the traffic
flow rate is zero: q(ρjam) = ρjamv(ρjam) = 0. The traffic flow rate must be
positive for all values of the density (0 < ρ < ρjam), and must attain its
maximum value qmax somewhere in that interval. Further, the slope of the
traffic flow rate is given by (see Problem 6.3):

dq

dρ
= v(ρ)+ ρ dv

dρ
. (6.12)

The qualitative results just found are embodied in the generic curve shown
in Figure 6.2, which is called the fundamental diagram of traffic flow. As
with Figure 6.1, the precise shape of the curve is unknown: the endpoint
values are specified and the variation of the slope can be inferred (see
Problem 6.4).
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Figure 6.2 A generic schematic of the
variation of the traffic flow rate with density.
It displays the endpoints, [(0, 0) and
(ρmax, 0), respectively], and shows that the
slope is positive until the maximum flow
rate or capacity, qmax, is reached, and
negative thereafter.
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To make some of these qualitative ideas more specific, consider the
following linear speed-density relationship:

v(ρ) = vmax

(
1− ρ

ρjam

)
. (6.13)

This relationship clearly satisfies (see Problem 6.5) all of the conditions
required by eqs. (6.11a–c). Moreover, as the simplest (linear) mathematical
expression that satisfies these conditions, it is particularly attractive as a
“building block” for further modeling, provided that it adequately models
reality. When substituted into eq. (6.9), it produces a relationship for the
traffic flow rate as a function of density that is parabolic :

q(ρ) = vmax

(
ρ − ρ2

ρjam

)
. (6.14)

The maximum flow rate occurs when its slope vanishes:

dq(ρ)

dρ
= vmax

(
1− 2ρ

ρjam

)
= 0. (6.15)

Equation (6.15) shows that the maximum traffic flow rate under these
assumptions occurs at the mid-point of the fundamental diagram, when
ρ = ρjam/2, and that its value is

qmax = 1

4
ρjamvmax. (6.16)

So, is the linear speed-density relationship of eq. (6.13) just a nice
demonstration model, or does it have any real utility or validity in model-
ing traffic flow? As a matter of fact, it is useful. In studies conducted for the
Lincoln, Holland, and Queens-Midtown Tunnels leading into New York’s
Manhattan island, for example, the linear speed-density relationship has
been shown to be a very good approximation to the central (and dominant)
part of the speed-density data gathered empirically. Such a curve is shown in
Figure 6.3. We will return to this point in Section 6.3 because car-following
models are expressly used to derive speed-density relationships.

Problem 6.3. Demonstrate that eq. (6.12) is correct.
Problem 6.4. Confirm qualitatively that eq. (6.12) produces the

shape of the fundamental diagram of road traffic
shown in Figure 6.2.

Problem 6.5. Show that the relationship (6.13) satisfies the condi-
tions defined in eqs. (6.11a–c).
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Problem 6.6. Derive and sketch the fundamental diagram for the
speed-density relationship

v(ρ) = vmax

(
1−

(
ρ

ρjam

)2
)

.

Problem 6.7. Derive and sketch the fundamental diagram for the
speed-density relationship

v(ρ) = vmax

(
1−

(
ρ

ρjam

)m)
.
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Figure 6.3 Another generic view of the
variation of traffic velocity with density, based
on the results often obtained when data is
gathered for particular traffic systems. In
addition to displaying the endpoints, [(0, vmax),
(ρmax, 0)], and the non-positive (dv /dρ < 0)
slope behavior, it shows that a significant
portion of the curve can be modeled by a
linear speed-density relationship.

6.2.4 The Continuum Hypothesis in Macroscopic

Traffic Modeling

The macroscopic traffic flow analysis we have done so far has been predi-
cated on the proposition that we could treat a line of traffic in the same way
that we would model the flow of a fluid through an artery or tube, that is,
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as a field. This means that the traffic line contains enough cars that instead
of worrying about the speed of the ith car, vi(x , t ), we choose to deal with a
speed field in which every point along the x axis is assigned a unique speed
v(x , t ). Thus, we have replaced the line of discrete cars at coordinates,
x = xi , by an infinite sequence of points, each having a unique speed
expressed by the continuous function, v(x , t ). This is an application of the
continuum hypothesis that we discussed in Section 4.7.2. Taking advantage
of the continuum hypothesis allows us to deal with continuous fields (e.g.,
smooth curves) instead of discrete elements (e.g., histograms), which often
makes the mathematics of model building much nicer. However, it carries
drawbacks: in the present model, for example, we could not include cars
overtaking and passing each other because that would require some points
on the x axis to have two different speeds!

How many cars do we need for a macroscopic analysis? The answer
depends on how we characterize the number of cars. We saw in Section 6.2.1
that we could measure the number of cars in two ways. One way is to stand
at a fixed point and count the number of cars passing by during a fixed
time interval, thus finding the traffic flow rate, q(x , t ), with units of cars
per unit of time. The second way requires counting the number of cars in
a given length of road and so determining the traffic density, ρ(x , t ), with
units of cars per unit of distance. (As a practical matter, the density would
be determined from aerial photographs of a given length of road.) In both
instances we must ask whether our counting intervals are sufficiently long,
that is, have we taken enough time to measure the traffic flow or enough
distance to measure the density?

To measure the density, we must choose a length of road that is (1) not
so short that we too often see fractions of cars or intervals with no cars
at all, and (2) not so long that the meaningful fluctuations would simply
cancel out. For example, a spatial count over the length of Interstate 5
between Los Angeles and San Francisco—about 350 miles—would miss
both the buildup at cities along the way and the long stretches through
farm country with sparse amounts of traffic. Figure 6.4 shows a conceptual
sketch for just such a measurement, showing the variation of traffic density
with the length of the measurement interval. (Note how similar it is to
its cousin in Figure 4.9!) It illustrates the discontinuities arising from the
fluctuations when the measuring interval is too short, and it shows the
decline in the density when the measuring length becomes so long that
the meaningful variations disappear. The central portion shows a regime
where the local density is relatively constant. It is for this region that we
can model our traffic density with a continuous field ρ(x , t ), in much the
same way we replaced the speeds of individual cars with the continuous
speed field, v(x , t ).
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Figure 6.4 A conceptual plot of the variation
of traffic density, ρ, against the length of the
measuring interval. It shows that the central
portion of the curve defines a useful
approximation of the local traffic density that
is (1) preceded by a regime where the density
fluctuates too much because the measuring
interval is too short, and (2) followed by a
regime where the density progressively falls
off because the measuring interval is
too long.

A comparable situation obtains if the traffic flow rate, q(x , t ), is the
measurement of choice. Here it is the length of the time interval that must
be “just right.” Short intervals before and after the change of a traffic
light, say from red to green, would show no cars before and a sudden
burst after. Similarly, counting by days would almost certainly cover up the
peaks generated by morning and evening rush hours. Thus, again, there is a
balancing act that must be performed in order to get the time measurement
interval properly set.

To sum up, the continuum hypothesis enables us to deal with aver- How?

aged or gross variables of traffic speed, density, and flow rate that do
not pertain to individual cars or vehicles, but to the fields that repres-
ent them. And, these fields are good models, or good representations
of reality, if we have done our scaling properly in choosing the proper
measurement intervals, that is, if we have properly set the measurement
scales.
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Problem 6.8. Consider a road segment 0.5 mi long that is divided
into 10 equally-spaced intervals. There are 40 cars on
the road, spaced as shown below, where the density of
the dots represents the traffic density. Find a “good”
value for the local density at point A in terms of the
number of cars per mile, assuming for simplicity that
each car has zero length.

A∣∣∣ ∣∣∣
∣∣∣• •• •

∣∣∣ • •
∣∣∣••• •

∣∣∣ • • • •
∣∣∣• •••••

∣∣∣••• • ••
∣∣∣• • •

∣∣∣•• •••
∣∣∣•• •

∣∣∣ • ••
∣∣∣∣∣∣ 10

∣∣∣ 20
∣∣∣ 30

∣∣∣ 40
∣∣∣ 50

∣∣∣ 60
∣∣∣ 70

∣∣∣ 80
∣∣∣ 90

∣∣∣ 100
∣∣∣

6.3 Microscopic Traffic Models

We now turn from macroscopic models that use averaged variables to
microscopic models that look at individual cars. Our interest is in usingWhy?

the microscopic models to develop the traffic speed-density relations that
we need to do macroscopic evaluations of capacity, which we require if
we’re going to design highway systems. As we noted in Section 6.2.2, we areFind?

looking for models that describe how drivers respond to the stimuli of their
traffic situations. The driver will perceive a variety of stimuli, including
the distance between vehicles, their relative speed, and their perceived
relative acceleration. We thus seek psychological, not mechanical, models
in order to model human behavior. The driver’s response will depend on
the responder’s sensitivity to the given stimuli, as well as on the speed with
which the response is undertaken. Thus, some time delay should also be
incorporated into such models.

6.3.1 An Elementary, Linear Car-following Model

Imagine a line of cars traversing a given road, as shown in Figure 6.5. Each
car is identified by a discrete coordinate that varies in time, so that the
location of the nth car is given by xn(t ). We also assume that the line has aAssume?

reasonable value of local density and does not permit passing or overtaking.
Then the basic “equation” of car-following for such a single lane of trafficHow?

is the psychological one:

response= sensitivity • stimulus. (6.17)
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d (t )Ln +1 Ln

x⋅n +1(t )

xn +1(t )

x⋅n(t )

xn(t )

Figure 6.5 The nomenclature for a line (or
lane) of cars on a highway of total length, LR .
Each car has the same length, L, and is
separated from its neighbors by a common
distance, d (t ). The discrete functions, xn+1(t )
and xn(t ), represent, respectively, the
coordinates of the follower and leader cars.

The response will generally be modeled as the acceleration of the (n+1)st
follower car, ẍn+1(t ), as it moves behind the nth leader car. The stimulus
will be modeled in terms of the coordinate of the follower car relative to the
leader car, which can in turn be written in terms of the traffic density, ρ.
The acceleration is then integrated to determine the speed of that car as Predict?

a function of the traffic density, which is the input we require for our
macroscopic modeling.

Consider a simple linear car-following model in which the driver of
the follower car responds to the speed of the leader car relative to the
follower car:

d2xn+1(t )

dt 2
= −Kp

(
dxn+1(t )

dt
− dxn(t )

dt

)
. (6.18)

The coefficient, Kp , introduced here is a sensitivity parameter that has
dimensions of per unit time. Note, that with Kp > 0, the follower car will
decelerate to avoid hitting the car in front if it is slowing down, relatively
speaking. We will discuss this in further detail later.

We can model the time it takes the following driver to respond to events
by building in a reaction time that slows the follower’s acceleration by the
delay time T :

d2xn+1(t + T )

dt 2
= −Kp

(
dxn+1(t )

dt
− dxn(t )

dt

)
. (6.19)

Assuming that the sensitivity parameter, Kp , is a constant, eq. (6.19) is a
linear ordinary differential equation with constant coefficients that can be
integrated once to yield

dxn+1(t + T )

dt
= −Kp(xn+1(t )− xn(t ))+ Cn+1, (6.20)
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where Cn+1 is the arbitrary constant, with dimensions of speed, that results
from the integration just performed. Note that eq. (6.20) clearly relates
the speed of the follower car to the distance maintained between the fol-
lower and leader cars. Thus, it is a natural precursor of the speed-density
relationship that we seek.

Let us further assume that all of the cars have the same length, L, and thatAssume?

the spacing between common points on any pair of cars (see Figure 6.5) is
given by d(t ):

d(t ) = xn(t )− L − xn+1(t ). (6.21)

It then follows that the number of cars, NR , found in a stretch of road of
length, LR , is

NR = LR

L + d(t )
, (6.22)

which means that the density of cars on that road is

ρ = LR

NR
= 1

L + d(t )
= 1

xn(t )− xn+1(t )
, (6.23)

where we have used the spacing defined in eq. (6.21) to obtain the final
form of eq. (6.23). Thus, we have in eq. (6.23) a relationship between the
(macroscopic) traffic density, ρ, and the (microscopic) coordinates of the
leader and follower cars.

There is an important point about the units of eq. (6.23) that should be
kept in mind. With particular reference to the units still used by American
traffic engineers, both car lengths and inter-vehicle distances are typically
measured in feet, while density is expressed in units of vehicles per mile.
Thus, for numerical calculations, eq. (6.23) should be written in consistent
numerical units:

ρ = 5280

L + d(t )

(
vehicles

mile

)
. (6.24)

Let us still further assume, for now at least, that the traffic flow is in aAssume?

steady state, by which we mean that all of the cars are traveling at the same
speed. Then

dxn+1(t + T )

dt
= dxn+1(t )

dt
≡ v . (6.25)

Equation (6.24) shows a relationship between the (macroscopic) speed, v ,
and the (microscopic) speeds of any of the follower cars. Additionally, for
this steady state, the arbitrary constant Cn+1 is the same for any adja-
cent pair of cars. Thus, we can now substitute eqs. (6.23) and (6.25) into
eq. (6.20) to find

v = Kp

ρ
+ C . (6.26)
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The constant, C , can be determined from the condition cited in eq. (6.11c),
namely, that the speed is zero when the density is at its maximum or jam
value. Hence it follows that

v = Kp

(
1

ρ
− 1

ρjam

)
. (6.27)

The speed-density relationship of eq. (6.27) is sketched in Figure 6.6.
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Figure 6.6 A schematic curve
illustrating the traffic speed-density
relationship [see eq. (6.27)]
corresponding to a linear car-following
model in which the driver responds to
the relative speed of the car ahead.

The curve shown in Figure 6.6 seems reasonable enough (see Valid?

Problem 6.10), except for the fact that it shows an infinite speed as the
density goes to zero, a result that hardly seems credible. This is an almost
classical modeling dilemma: we have a model that seems reasonable and
credible over a good portion of the relevant domain, but that crashes in
some region. Can this model be improved or fixed? It can be fixed, or Improve?

improved; it depends on what we want from this model.
Fixing the high (infinite at ρ = 0) speed at small values of the density is

straightforward enough. All we need do is stipulate that a maximum speed
applies for all values of density below some (specified) critical density. This
seems like a reasonable fix that roughly accords with our everyday driving
experience. This fix is shown in Figure 6.7 and in eqs. (6.28a–b):

v(ρ) =



vmax ρ < ρcrit

Kp

(
1

ρ
− 1

ρjam

)
ρ ≥ ρcrit

(6.28a)
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Figure 6.7 A schematic curve illustrating
the traffic speed-density relationship
[eqs. (6.28a–b)] corresponding to the fixed
linear car-following model in which the
driver responds to the relative speed of the
car ahead—except at small values of the
density, ρ < ρcrit, for which the maximum
speed has a fixed upper limit of v = vmax.

and

ρcrit =
(

vmax

Kp
+ 1

ρjam

)−1

. (6.28b)

The traffic flow rate corresponding to this fixed speed-density relationship
is found as:

q(ρ) =


ρvmax ρ < ρcrit

Kp

(
1− ρ

ρjam

)
ρ ≥ ρcrit

(6.29)

The traffic flow rate, pictured in Figure 6.8, increases linearly with density
(from zero), and reaches its maximum value, the capacity, when ρ = ρcrit:

qmax = q(ρcrit) = ρcritvmax = Kp

(
1− ρcrit

ρjam

)
. (6.30)

For density values ρ ≥ ρcrit, the traffic flow rate decreases linearly with
ρ from its maximum value at ρ = ρcrit until it vanishes altogether
at ρ = ρjam.

How good is this model? As luck would perhaps have it, having justVerified?

fixed a model that is incredible (literally!), we are still left with one that
does compare well with some available data. In Figures 6.9 and 6.10 we
show measurement data made in Orange County, California, on the I–405
freeway. It yields reasonable values of the jam (or maximum) density and,
as shown in Figure 6.10, the shape of the resulting traffic flow rate curve
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Figure 6.8 A schematic curve illustrating the
relationship between the traffic flow rate and the
density [eq. (6.29)] for the fixed linear car-following
model in which the driver responds to the relative
speed of the car ahead. Note that the maximum
traffic flow rate q = qmax occurs when ρ = ρcrit.
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Figure 6.9 Some traffic speed-density data measured for the
I–405 freeway in Orange County, California, plotted along with
corresponding results from the piecewise linear or triangular
car-following model [eq. (6.38)] (Recker, 2003). The
corresponding parameter values are Sf = 80 mph,
qcrit = 2300 cars/hr, and ρjam = 211 cars/mi.



168 Chapter 6 Traffic Flow Models

12000

10000

8000

6000

Fl
o

w
 (

ve
h

/h
r)

4000

2000

0
0 100 200 300 400 500

Density (veh/mi)

600 700 800 900

Figure 6.10 Some traffic flow rate data measured for the
I–405 freeway in Orange County, California, plotted along with
the piecewise linear or triangular car-following model
[eq. (6.35)] (Recker, 2003). The corresponding parameter
values are Sf = 80 mph, qcrit = 2300 cars/hr, and
ρjam = 211 cars/mi.

follows the data for traffic parameter values that are not uncommon on
California freeways, including speeds up to 80 mph and jam densities of
211 veh/mi/lane that correspond to vehicles stopped at 25 ft separation.

Another aspect of this model is worth noting. One of the heuristics or
rules of thumb offered by state Departments of Motor Vehicles (DMV) is
that drivers should maintain a distance behind the car immediately in front
that is equal to one car length, L (ft.), for each increment of 10 mph of the
car’s speed. Thus, the DMV heuristic would require that

d(t ) =
(

L

10

)
v . (6.31)

If eq. (6.31) is substituted into our previous, units-corrected defini-
tion of the traffic density (6.24), we immediately obtain a speed-density
relationship

ρ = 5280

L + (L/10)v
,

that can be recast in the form:

v = 5280(10)

L

(
1

ρ

)
− 10. (6.32)

Equation (6.32) bears an unmistakable resemblance to the result (6.27)
derived just above (see Problems 6.13–6.15).
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Problem 6.9. Derive eq. (6.21) from Figure 6.5.
Problem 6.10. Determine whether or not eq. (6.26) satisfies each of

the three conditions in eqs. (6.11a–c).
Problem 6.11. Derive the result presented in eq. (6.28b). Is it

dimensionally correct?
Problem 6.12. Confirm the traffic flow rate results shown in

eqs. (6.29).
Problem 6.13. Determine the values of the constants, Kp and ρjam,

that make eqs. (6.27) and (6.32) identical.
Problem 6.14. Why does the DMV model produce the same form

(and numbers) as the speed-sensitive car-following
model?

Problem 6.15. What is the physical interpretation of ρjam for the
DMV model?

6.3.2 An Alternate Derivation of the Same Model

Suppose we want to derive the above model using an empirical, yet Improve?

Assume?“mechanical” approach. We know that flow rate increases with density
until it reaches a critical value, and then it decreases to zero at the jam
density. Thus—without benefit of the car-following model (6.25) or the
data we have already seen in Figure 6.10!—we assume a priori that the
traffic flow rate will behave in a piecewise linear fashion, in the following
triangular traffic flow rate:

q(ρ) =



Aρ ρ < ρcrit

B

(
1− ρ − ρcrit

ρjam − ρcrit

)
ρ ≥ ρcrit

(6.33)

where the constants A and B are determined from the requirement that
q(ρ) be continuous at ρ = ρcrit, that is,

q(ρ = ρcrit) = qcrit. (6.34)

Thus, eq. (6.33) becomes

q(ρ) =




qcrit

(
ρ

ρcrit

)
ρ < ρcrit

qcrit

(
1− ρ − ρcrit

ρjam − ρcrit

)
ρ ≥ ρcrit

(6.35)
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The speed-density relationship corresponding to the traffic flow rate (6.35)
is then found by applying the relationship (6.9) between the traffic flow
rate and the speed, so that

v(ρ) =




qcrit

ρcrit
ρ < ρcrit

qcrit

ρcrit



ρjam

ρ
− 1

ρjam

ρcrit
− 1


 ρ ≥ ρcrit

(6.36)

While the speed-density relationship in eq. (6.36) does not have the nice,
linear properties of the speed-density of eq. (6.13), we have maintained the
corresponding piecewise linear flow-density relationship. Equations (6.35)
and (6.36) have the same form as, respectively, eqs. (6.29) and (6.28),
although they were derived by very different means!

One interesting version of the results in eq. (6.36) is their presentation
in terms of a parameter called the free-flow speed, Sf , which is the speed at
which a driver would travel if all alone on the road, that is, if the density
were zero. From the first of eq. (6.36) we find that

Sf = qcrit

ρcrit
, (6.37)

from which it follows that eqs. (6.36) now become:

v(ρ) = Sf




1 ρ < ρcrit

ρjam

ρ
− 1

ρjam

ρcrit
− 1


 ρ ≥ ρcrit

(6.38)

Equations (6.38) and (6.35), with parameter values of Sf = 80 mph,Verified?

qcrit = 2300 cars/hr, and ρjam = 211 cars/mi, are shown in Figures 6.9
and 6.10, together with data taken from the I–405 freeway measurements.
We see that the agreement is quite good over most of the range of density
for both the speed and the traffic flow.

6.3.3 Comments on Car-following Models

It is worth noting that the two models just presented were found in very dif-
ferent ways. The elementary and fixed car-following models of Section 6.3.1
were derived from a stimulus-response model that was re-worked into a
speed-density relationship, from which we then obtained the traffic flow
rate. The revised model presented in Section 6.3.2 was found by starting
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with traffic flow rate data and trying to create a model to match that data.
Indeed, we have not gone so far as to find a matching stimulus model for
the improved model. Does that matter?

The answer is a familiar one: it depends. If our principal goal is the one we
claimed earlier, that of modeling capacity, then it matters less which of the
two approaches we use as long as we can validate and verify the results. On
the other hand, in an emerging area of transportation engineering, efforts
are being made to model the control of vehicles, with the aim of trying
to maximize the flow of traffic by more effectively controlling how each
vehicle is driven. This area encompasses a number of exciting prospects
that are, unfortunately, beyond our present scope. Achieving results in the
latter case means that stimulus-response control modeling will be required,
while “only” good modeling of traffic speed and traffic flow rate is required
for capacity-based engineering to move forward.

6.4 Summary

This chapter has introduced some of the most fundamental ideas of traffic
modeling as they are applied in the engineering of traffic systems. We
described macroscopic models that predict the average variables of traffic
density and traffic flow rates because they are very important for calculating
the capacity of roads and highways. We then pointed out the role of scaling
and of the continuum hypothesis in moving from macroscopic models to
microscopic and in beneficially integrating the two. We introduced micro-
scopic models that predict how speed varies with driver sensitivities and
responses to various traffic stimuli because they provide a basis for obtain-
ing the gross traffic density and flow rates needed in macroscopic models.
Finally, we also noted in passing that the microscopic models are increas-
ingly used to investigate the control of individual vehicles, as well as lines
(or lanes) of vehicles.
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6.6 Problems

6.16. What is the meaning and physical significance of the statement,
∂q/∂x > 0, (i.e., that the macroscopic traffic flow rate, q(x , t ),
increases with the distance, x , along the line of traffic)?

6.17. If the average length of a car (in pre-Expedition days) is 5 m, what is
the density of traffic in a line when its cars are maintaining a distance
of two car lengths between themselves. What is the traffic flow if the
line is moving at 80 km/hr (50 mph)? (Hint : You may ignore the fact
that the data given ignores both AAA recommendations and your
own experience on a freeway or turnpike.)

6.18. (a) Assume that velocity depends linearly on density, such that
v(ρ) = a+ bρ. Determine the values of a and b in terms of the
maximum values of the speed and the density, assuming that
the assumptions of eqs. (6.11a–c) hold.

(b) How does the flow depend on the density?
6.19. (a) Sketch the fundamental diagram of road traffic for the model

developed in Problem 6.18 if a = 80 km/hr and b =
−105 m2/car·hr.

(b) Determine the values of the density and the speed when the flow
is a maximum.

(c) What is the capacity of the road being modeled?
6.20. Consider a flow-density relationship of the form q(ρ) = ρ(α−βρ).

The best fit (i.e., least squares) of this relationship to some real traffic
data occurred when α = 91.33 km/hr and β = 1.4 km2/car·hr.

(a) What is the maximum density?
(b) What is the maximum speed?
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(c) What is the capacity of the road?
(d) Identify the type of road being modeled and explain your

identification.
6.21. Find the speed of traffic on a line of traffic for which there are

three car lengths between the leader and follower cars. (Hint : Use
macroscopic traffic theory with a linear speed-density relation.)

6.22. Determine the capacity of the road described in Problem 6.21 if cars
are assumed to be 5 m long, vmax = 88.5 km/hr and ρmax = 0.22−1.

6.23. The data in the table shown below were obtained by recording the
indicated parameters along a busy stretch of highway.

(a) Sketch the fundamental diagram for this traffic flow.
(b) What is the maximum traffic flow?
(c) What are the density and speed at the maximum flow rate?

Speed (mph) Density (cars/mi)

42 44
40 49
37 53
35 58
32 64
28 67
26 69
23 74
20 80
19 85
18 90
17 95
16 101
15 106
14 112
13 120
12 128
11 139
10 151

9 166

6.24. Plot traffic speed against traffic density for the data given in
Problem 6.23. Draw an approximate curve through this data and
estimate the maximum values of the speed and the density on
this road.


