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What Is Mathematical

Modeling?

We begin this book with a dictionary definition of the word model :

model (n): a miniature representation of something; a pattern of some-
thing to be made; an example for imitation or emulation; a description or
analogy used to help visualize something (e.g., an atom) that cannot be dir-
ectly observed; a system of postulates, data and inferences presented as a
mathematical description of an entity or state of affairs

This definition suggests that modeling is an activity, a cognitive activity in
which we think about and make models to describe how devices or objects
of interest behave.

There are many ways in which devices and behaviors can be described.
We can use words, drawings or sketches, physical models, computer pro-
grams, or mathematical formulas. In other words, the modeling activity
can be done in several languages, often simultaneously. Since we are par-
ticularly interested in using the language of mathematics to make models,
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we will refine the definition just given:

mathematical model (n): a representation in mathematical terms of the
behavior of real devices and objects

We want to know how to make or generate mathematical representations
or models, how to validate them, how to use them, and how and when their
use is limited. But before delving into these important issues, it is worth
talking about why we do mathematical modeling.

1.1 Why Do We Do Mathematical Modeling?

Since the modeling of devices and phenomena is essential to both engi-
neering and science, engineers and scientists have very practical reasons
for doing mathematical modeling. In addition, engineers, scientists, and
mathematicians want to experience the sheer joy of formulating and solving
mathematical problems.

1.1.1 Mathematical Modeling and the

Scientific Method

In an elementary picture of the scientific method (see Figure 1.1), we identify
a “real world” and a “conceptual world.” The external world is the one
we call real; here we observe various phenomena and behaviors, whether
natural in origin or produced by artifacts. The conceptual world is the
world of the mind—where we live when we try to understand what is
going on in that real, external world. The conceptual world can be viewed
as having three stages: observation, modeling, and prediction.

In the observation part of the scientific method we measure what is
happening in the real world. Here we gather empirical evidence and “facts
on the ground.” Observations may be direct, as when we use our senses, or
indirect, in which case some measurements are taken to indicate through
some other reading that an event has taken place. For example, we often
know a chemical reaction has taken place only by measuring the product
of that reaction.

In this elementary view of how science is done, the modeling part is
concerned with analyzing the above observations for one of (at least) three
reasons. These rationales are about developing: models that describe the
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Figure 1.1 An elementary
depiction of the scientific method
that shows how our conceptual
models of the world are related to
observations made within that real
world (Dym and Ivey, 1980).

behavior or results observed; models that explain why that behavior and
results occurred as they did; or models that allow us to predict future
behaviors or results that are as yet unseen or unmeasured.

In the prediction part of the scientific method we exercise our models
to tell us what will happen in a yet-to-be-conducted experiment or in
an anticipated set of events in the real world. These predictions are then
followed by observations that serve either to validate the model or to suggest
reasons that the model is inadequate.

The last point clearly points to the looping, iterative structure apparent
in Figure 1.1. It also suggests that modeling is central to all of the conceptual
phases in the elementary model of the scientific method. We build models
and use them to predict events that can confirm or deny the models. In
addition, we can also improve our gathering of empirical data when we use
a model to obtain guidance about where to look.

1.1.2 Mathematical Modeling and the

Practice of Engineering

Engineers are interested in designing devices and processes and systems.
That is, beyond observing how the world works, engineers are interested
in creating artifacts that have not yet come to life. As noted by Herbert
A. Simon (in The Sciences of the Artificial), “Design is the distinguishing
activity of engineering.” Thus, engineers must be able to describe and
analyze objects and devices into order to predict their behavior to see if
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that behavior is what the engineers want. In short, engineers need to model
devices and processes if they are going to design those devices and processes.

While the scientific method and engineering design have much in com-
mon, there are differences in motivation and approach that are worth
mentioning. In the practices of science and of engineering design, mod-
els are often applied to predict what will happen in a future situation. In
engineering design, however, the predictions are used in ways that have
far different consequences than simply anticipating the outcome of an
experiment. Every new building or airplane, for example, represents a
model-based prediction that the building will stand or the airplane will fly
without dire, unanticipated consequences. Thus, beyond simply validat-
ing a model, prediction in engineering design assumes that resources of
time, imagination, and money can be invested with confidence because the
predicted outcome will be a good one.

1.2 Principles of Mathematical Modeling

Mathematical modeling is a principled activity that has both principles
behind it and methods that can be successfully applied. The principles are
over-arching or meta-principles phrased as questions about the intentions
and purposes of mathematical modeling. These meta-principles are almost
philosophical in nature. We will now outline the principles, and in the next
section we will briefly review some of the methods.

A visual portrayal of the basic philosophical approach is shown in
Figure 1.2. These methodological modeling principles are also captured
in the following list of questions and answers:

• Why? What are we looking for? Identify the need for the model.
• Find? What do we want to know? List the data we are seeking.
• Given? What do we know? Identify the available relevant data.
• Assume? What can we assume? Identify the circumstances that apply.
• How? How should we look at this model? Identify the governing

physical principles.
• Predict? What will our model predict? Identify the equations that will

be used, the calculations that will be made, and the answers that will
result.
• Valid? Are the predictions valid? Identify tests that can be made

to validate the model, i.e., is it consistent with its principles and
assumptions?
• Verified? Are the predictions good? Identify tests that can be made

to verify the model, i.e., is it useful in terms of the initial reason it
was done?
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Figure 1.2 A first-order view of mathematical modeling that
shows how the questions asked in a principled approach to building
a model relate to the development of that model (inspired by
Carson and Cobelli, 2001).

• Improve? Can we improve the model? Identify parameter values that
are not adequately known, variables that should have been included,
and/or assumptions/restrictions that could be lifted. Implement the
iterative loop that we can call “model-validate-verify-improve-predict.”
• Use? How will we exercise the model? What will we do with the model?

This list of questions and instructions is not an algorithm for building
a good mathematical model. However, the underlying ideas are key to
mathematical modeling, as they are key to problem formulation generally.
Thus, we should expect the individual questions to recur often during the
modeling process, and we should regard this list as a fairly general approach
to ways of thinking about mathematical modeling.

Having a clear picture of why the model is wanted or needed is of prime
importance to the model-building enterprise. Suppose we want to estimate
how much power could be generated by a dam on a large river, say a dam
located at The Three Gorges on the Yangtze River in Hubei Province in the
People’s Republic of China. For a first estimate of the available power, we
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wouldn’t need to model the dam’s thickness or the strength of its founda-
tion. Its height, on the other hand, would be an essential parameter of a
power model, as would some model and estimates of river flow quantities.
If, on the other hand, we want to design the actual dam, we would need
a model that incorporates all of the dam’s physical characteristics (e.g.,
dimensions, materials, foundations) and relates them to the dam site and
the river flow conditions. Thus, defining the task is the first essential step
in model formulation.

We then should list what we know—for example, river flow quantities
and desired power levels—as a basis for listing the variables or parameters
that are as yet unknown. We should also list any relevant assumptions.
For example, levels of desired power may be linked to demographic or
economic data, so any assumptions made about population and economic
growth should be spelled out. Assumptions about the consistency of river
flows and the statistics of flooding should also be spelled out.

Which physical principles apply to this model? The mass of the river’s
water must be conserved, as must its momentum, as the river flows, and
energy is both dissipated and redirected as water is allowed to flow through
turbines in the dam (and hopefully not spill over the top!). And mass must
be conserved, within some undefined system boundary, because dams do
accumulate water mass from flowing rivers. There are well-known equa-
tions that correspond to these physical principles. They could be used
to develop an estimate of dam height as a function of power desired.
We can validate the model by ensuring that our equations and calcu-
lated results have the proper dimensions, and we can exercise the model
against data from existing hydroelectric dams to get empirical data and
validation.

If we find that our model is inadequate or that it fails in some way, we
then enter an iterative loop in which we cycle back to an earlier stage of the
model building and re-examine our assumptions, our known parameter
values, the principles chosen, the equations used, the means of calculation,
and so on. This iterative process is essential because it is the only way that
models can be improved, corrected, and validated.

1.3 Some Methods of Mathematical

Modeling

Now we will review some of the mathematical techniques we can use to help
answer the philosophical questions posed in Section 1.2. These mathemati-
cal principles include: dimensional homogeneity, abstraction and scaling,
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conservation and balance principles, and consequences of linearity. We will
expand these themes more extensively in the first part of this book.

1.3.1 Dimensional Homogeneity and Consistency

There is a basic, yet very powerful idea that is central to mathematical
modeling, namely, that every equation we use must be dimensionally homo-
geneous or dimensionally consistent. It is quite logical that every term in an
energy equation has total dimensions of energy, and that every term in
a balance of mass should have the dimensions of mass. This statement
provides the basis for a technique called dimensional analysis that we will
discuss in greater detail in Chapter 2.

In that discussion we will also review the important distinction between
physical dimensions that relate a (derived) quantity to fundamental physi-
cal quantities and units that are numerical expressions of a quantity’s
dimensions expressed in terms of a given physical standard.

1.3.2 Abstraction and Scaling

An important decision in modeling is choosing an appropriate level of
detail for the problem at hand, and thus knowing what level of detail is
prescribed for the attendant model. This process is called abstraction and it
typically requires a thoughtful approach to identifying those phenomena
on which we want to focus, that is, to answering the fundamental question
about why a model is being sought or developed.

For example, a linear elastic spring can be used to model more than just
the relation between force and relative extension of a simple coiled spring,
as in an old-fashioned butcher’s scale or an automobile spring. It can also be
used to model the static and dynamic behavior of a tall building, perhaps to
model wind loading, perhaps as part of analyzing how the building would
respond to an earthquake. In these examples, we can use a very abstract
model by subsuming various details within the parameters of that model.
We will explore these issues further in Chapter 3.

In addition, as we talk about finding the right level of abstraction or the
right level of detail, we are simultaneously talking about finding the right
scale for the model we are developing. For example, the spring can be used
at a much smaller, micro scale to model atomic bonds, in contrast with
the macro level for buildings. The notion of scaling includes several ideas,
including the effects of geometry on scale, the relationship of function to
scale, and the role of size in determining limits—all of which are needed
to choose the right scale for a model in relation to the “reality” we want to
capture.
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1.3.3 Conservation and Balance Principles

When we develop mathematical models, we often start with statements
that indicate that some property of an object or system is being conserved.
For example, we could analyze the motion of a body moving on an ideal,
frictionless path by noting that its energy is conserved. Sometimes, as when
we model the population of an animal colony or the volume of a river flow,
we must balance quantities, of individual animals or water volumes, that
cross a defined boundary. We will apply balance or conservation principles
to assess the effect of maintaining or conserving levels of important physi-
cal properties. Conservation and balance equations are related—in fact,
conservation laws are special cases of balance laws.

The mathematics of balance and conservation laws are straightforward
at this level of abstraction. Denoting the physical property being monitored
as Q(t ) and the independent variable time as t , we can write a balance law
for the temporal or time rate of change of that property within the system
boundary depicted in Figure 1.3 as:

dQ(t )

dt
= qin(t )+ g (t )− qout (t )− c(t ), (1.1)

where qin(t ) and qout (t ) represent the flow rates of Q(t ) into (the influx)
and out of (the efflux) the system boundary, g (t ) is the rate at which
Q is generated within the boundary, and c(t ) is the rate at which Q is
consumed within that boundary. Note that eq. (1.1) is also called a rate
equation because each term has both the meaning and dimensions of the
rate of change with time of the quantity Q(t ).

Efflux, qout

System Boundary

Q (t)
Influx, qin

Consumption, c (t )

Generation, g (t)

Figure 1.3 A system boundary surrounding the object or
system being modeled. The influx qin(t ), efflux qout (t ),
generation g(t ), and consumption c(t ), affect the rate at
which the property of interest, Q(t ), accumulates within
the boundary (after Cha, Rosenberg, and Dym, 2000).
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In those cases where there is no generation and no consumption within
the system boundary (i.e., when g = c = 0), the balance law in eq. (1.1)
becomes a conservation law:

dQ(t )

dt
= qin(t )− qout (t ). (1.2)

Here, then, the rate at which Q(t ) accumulates within the boundary is
equal to the difference between the influx, qin(t ), and the efflux, qout (t ).

1.3.4 Constructing Linear Models

Linearity is one of the most important concepts in mathematical model-
ing. Models of devices or systems are said to be linear when their basic
equations—whether algebraic, differential, or integral—are such that the
magnitude of their behavior or response produced is directly proportional
to the excitation or input that drives them. Even when devices like the
pendulum discussed in Chapter 7 are more fully described by nonlinear
models, their behavior can often be approximated by linearized or per-
turbed models, in which cases the mathematics of linear systems can be
successfully applied.

We apply linearity when we model the behavior of a device or system
that is forced or pushed by a complex set of inputs or excitations. We obtain
the response of that device or system to the sum of the individual inputs
by adding or superposing the separate responses of the system to each indi-
vidual input. This important result is called the principle of superposition.
Engineers use this principle to predict the response of a system to a com-
plicated input by decomposing or breaking down that input into a set of
simpler inputs that produce known system responses or behaviors.

1.4 Summary

In this chapter we have provided an overview of the foundational material
we will cover in this book. In so doing, we have defined mathematical
modeling, provided motivation for its use in engineering and science, and
set out a principled approach to doing mathematical modeling. We have
also outlined some of the important tools that will be covered in greater
detail later: dimensional analysis, abstraction and scaling, balance laws,
and linearity.

It is most important to remember that mathematical models are repre-
sentations or descriptions of reality—by their very nature they depict reality.
Thus, we close with a quote from a noted linguist (and former senator from
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California) to remind ourselves that we are dealing with models that, we
hope, represent something that seems real and relevant to us. However,
they are abstractions and models, they are themselves real only as models,
and they should never be confused with the reality we are trying to model.
Thus, if the behavior predicted by our models does not reflect what we see
or measure in the real world, it is the models that need to be fixed—and
not the world:

“The symbol is NOT the thing symbolized; the word is NOT the thing; the map is
NOT the territory it stands for.”

—S. I. Hayakawa, Language in Thought and Action
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